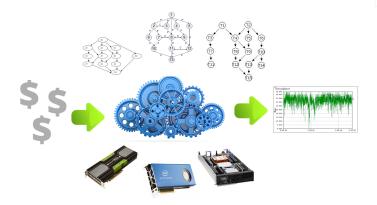


Minimizing rental cost for multiple recipe applications in the Cloud

F. Hana, L. Marchal, J.-M. Nicod, L. Philippe, V. Rehn-Sonigo and H. Sabbah

LIP-ENS Lyon – FEMTO-ST institute - UFC/ENSMM Besançon

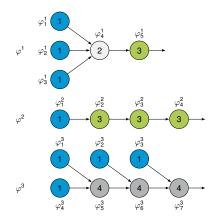
Nashville - May 18th, 2016



Overall objective: To provision just enough resources to reach the target throughput for a given DAG-based streaming application

Application framework

Each workflow application φ^{j} produces the same result Φ .



- Each task φ_i^j has a task type q
- Target throughput ρ
- Each application can be run at a different throughput ρ_j

•
$$\rho = \sum_j \rho_j$$

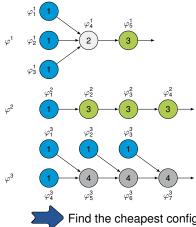
Target platform

One processor type per task type

- *c*_q: Rental cost for type *q*
- r_q: Throughput of type q

Application framework

Each workflow application φ^{j} produces the same result Φ .



- Each task φ_i^j has a task type q
- Target throughput ρ
- Each application can be run at a different throughput ρ_j

•
$$\rho = \sum_j \rho_j$$

Target platform

One processor type per task type

- *c*_q: Rental cost for type *q*
- r_q: Throughput of type q

Find the cheapest configuration to reach the target throughput

MinCOST: Minimize the global rental cost C

Given

- an application described by J graphs
- a platform described by processor cost cq and throughput rq
- a target throughput ρ
- \Rightarrow select which graphs φ^{j} are used
- \Rightarrow choose their output throughput ρ_j ($\rho_j = 0$ if unused)
- \Rightarrow deduce the number of processors x_q of each type

to reach the prescribed throughput within minimal cost.

Simple case

• The application is described by a single graph

General case

$$\rho = \sum_j \rho_j$$

- Black box application
- Application graphs without shared task types
- Application graphs with shared task types

Simple case: Single application graph

- One application described by one single graph φ^1
- ∀q, the number of machines x_q can be easily computed:

$$X_q = \left\lceil \frac{n_q}{r_q} \cdot \rho \right\rceil$$

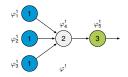
• The associated cost Cq

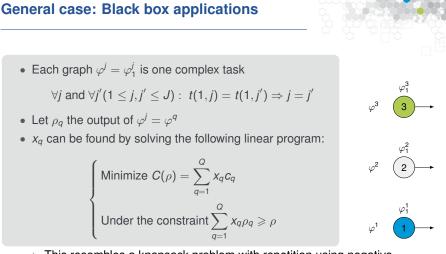
$$C_q(\rho) = \left\lceil \frac{n_q}{r_q} \cdot \rho \right\rceil \times c_q$$

• The final cost C:

$$C(\rho) = \sum_{q=1}^{Q} C_q(\rho) = \sum_{q=1}^{Q} \left\lceil \frac{n_q}{r_q} \cdot \rho \right\rceil \times c_q$$

n_q: number of tasks, r_q: throughput, c_q: cost of type q





 $\Rightarrow~$ This resembles a knapsack problem with repetition using negative weights and values

Unbounded Knapsack Problem

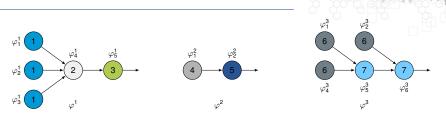
Given *n* objects with value v_i and weight w_i , and a total capacity of *W*, how many copies of each object should we select to maximize the total value without exceeding weight *W* ?

ILP formulation with x_i the number of copies of item *i* included in the solution

$$\begin{cases} \text{Maximize } \sum x_i v_i \\ \text{Under the constraint } \sum x_i w_i \leqslant W \end{cases}$$

Our problem is thus equivalent to a knapsack problem where:

- Items have value $(-c_q)$ and weight $(-\rho_q)$
- The total capacity is $(-\rho)$.
- \Rightarrow The knapsack problem is a (unary) NP-complete problem
- $\Rightarrow~$ There exists a pseudo-polynomial dynamic program (time complexity $O(J\rho))$



- Application Φ can be described by φ¹,...,φ^j,...,φ^j with the same output result
- Each task φ_i^j from one graph φ^j has a different type from every other task of an other graph $\varphi^{j'}$

 $t(i,j) \neq t(i',j')$ with $1 \leq j,j' \leq J$ and $j \neq j'$ and $1 \leq i \leq I_j$ and $1 \leq i' \leq I_{j'}$

- This problem is unary NP-complete (includes Black Box applications)
- $\Rightarrow\,$ There exists a pseudo-polynomial dynamic program to solve it

A dynamic program to solve this problem

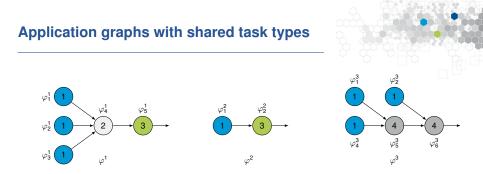
 Let C(ρ, j) be the optimal platform cost to reach ρ using the first j application graphs

$$C(\rho, j) = \begin{cases} \sum_{i=1}^{l_1} \left\lceil \frac{n_{l(i,1)}^1}{r_{l(i,1)}} \cdot \rho \right\rceil \times c_{l(1,k)} \text{ if } j = 1\\ \min_{0 \le \rho_j \le \rho} \left(C(\rho - \rho_j, j - 1) + \right.\\ \left. \sum_{i=1}^{l_j} \left\lceil \frac{n_{l(i,j)}^j}{r_{l(t(i,j))}} \cdot \rho_j \right\rceil \times c_{l(i,j)} \right)\\ \text{otherwise} \end{cases}$$

 \Rightarrow The solution is given by $C(\rho, J)$

Complexity analysis

- As $\forall q, r_q \in \mathbb{N}, \forall j \ \rho_j \in \mathbb{N}$
- ightarrow There exists a finite number of ho_j to test in the previous formulation
 - To compute $C(\rho, j)$, all $C(\rho', j')$ with $\rho' \le \rho$ and $j' \le j$ has to be computed
- \Rightarrow The complexity of the elementary computation is $O(\rho l)$
- \Rightarrow The complexity of computing $C(\rho)$ is $O(\rho^2 IJ)$



One application is described by several graphs which share task types

$$\exists \varphi^{j}, \varphi^{j'} (1 \leq j, j' \leq J, j \neq j'), \exists i (1 \leq i \leq l_{j}), \\ \exists i' (1 \leq i' \leq l_{j'}) \text{ s.t. } t(i, j) = t(i', j')$$

 \Rightarrow A processor may be shared between several application graphs

ILP formulation

Minimizing
$$C(\rho) = \sum_{q=1}^{Q} x_q \cdot c_q$$

under the constraints

ρ has to be at least the sum of *ρ_j*

$$\sum_{j=1}^{J} \rho_j \ge \rho$$

• For each type q we have to provision enough resources (x_q)

$$\forall q \ x_q \cdot r_q \ge \sum_{j=1}^J \left(\sum_{i=1|t(i,j)=q}^{l_j} \rho_j\right),$$

with q = t(i, j) and $x_q \in \mathbb{N}$

ILP formulation

Minimizing
$$C(\rho) = \sum_{q=1}^{Q} x_q \cdot c_q$$

under the constraints

ρ has to be at least the sum of *ρ_j*

$$\sum_{j=1}^{J} \rho_j \ge \rho$$

• For each type q we have to provision enough resources (xq)

$$\forall q \ x_q \cdot r_q \ge \sum_{j=1}^J \left(\sum_{i=1\mid t(i,j)=q}^{l_j} \rho_j\right),$$

with q = t(i, j) and $x_q \in \mathbb{N}$

The complexity of this case is still open unary or binary NP-complete

$$\rho = (\rho_1, \rho_2, \ldots, \rho_J)$$

- 1. H0: random
- 2. H1: best graph
- 3. H2: random walk
- 4. H31: stochastic descent
- 5. H32/H32Jump: steepest gradient

$$\rho = (\rho_1, \rho_2, \ldots, \rho_J)$$

- 1. H0: random
- 2. H1: best graph
- 3. H2: random walk
- 4. H31: stochastic descent
- 5. H32/H32Jump: steepest gradient

$$\rho = (\rho_1, \rho_2, \ldots, \rho_J)$$

- 1. H0: random
- 2. H1: best graph
- 3. H2: random walk
- 4. H31: stochastic descent
- 5. H32/H32Jump: steepest gradient

$$\rho = (0, \ldots, \rho, \ldots, 0)$$

$$\rho = (\rho_1, \rho_2, \ldots, \rho_J)$$

- 1. H0: random
- 2. H1: best graph
- 3. H2: random walk
 - φ_{j1} and φ_{j2} are randomly chosen

$$(\dots, \rho_{j1}, \dots, \rho_{j2}, \dots) \to (\dots, \rho_{j1} - \delta, \dots, \rho_{j2} + \delta, \dots)$$
$$(\dots, \rho_{j1}, \dots, \rho_{j2}, \dots) \to (\dots, 0, \dots, \rho_{j2} + \rho_{j1} \dots) \quad \text{if } \rho_{J1} < \delta$$

- 4. H31: stochastic descent
- 5. H32/H32Jump: steepest gradient

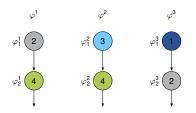
$$\rho = (\rho_1, \rho_2, \ldots, \rho_J)$$

- 1. H0: random
- 2. H1: best graph
- 3. H2: random walk
- 4. H31: stochastic descent
 - Same as H2 except that we keep the same solution as long as we do not obtain any improvement
- 5. H32/H32Jump: steepest gradient

$$\rho = (\rho_1, \rho_2, \ldots, \rho_J)$$

- 1. H0: random
- 2. H1: best graph
- 3. H2: random walk
- 4. H31: stochastic descent
- 5. H32/H32Jump: steepest gradient
 - H32/H32Jump same as H2 except we test all possible throughput fraction exchanges and keep the best until no more improvement is possible
 - H32Jump allows to explore solution that increases C(ρ)

Illustrating example

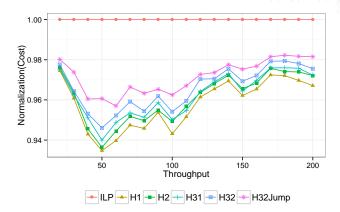


Processor	type	ρ	cost		
<i>P</i> ₁	<i>t</i> ₁	10	10		
P ₂	t ₂	20	18		
P ₃	t ₃	30	25		
<i>P</i> ₄	<i>t</i> 4	40	33		

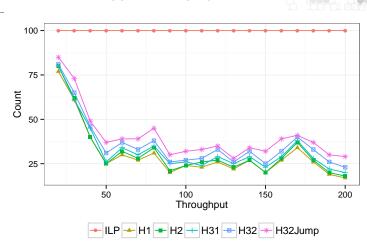
Results

	ILP				H1			H 2			H 32 JUMP					
ρ	ρ_1	ρ_2	ρ_3	cost	ρ_1	ρ_2	ρ_3	cost	ρ_1	ρ2	ρ_3	cost	ρ_1	ρ_2	ρ_3	cost
10	0	0	10	28	0	0	10	28	0	0	10	28	0	0	10	28
40	40	0	0	69	40	0	0	69	40	0	0	69	40	0	0	69
50	10	30	10	86	0	0	50	104	10	30	10	86	10	30	10	86
130	30	90	10	220	0	0	130	256	30	90	10	220	90	30	10	224
140	0	120	20	237	0	140	0	257	0	120	20	237	0	120	20	237
150	0	150	0	257	0	150	0	257	0	150	0	257	0	150	0	257
200	20	180	0	333	0	200	0	340	20	180	0	333	20	180	0	333

Experiments: small application graphs



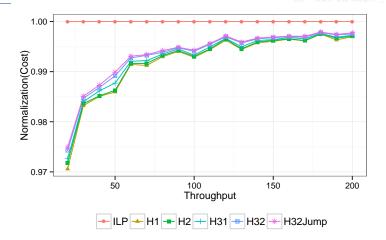
ILP: Gurobi Simulator: Python Normalization of cost with the optimal solution 20 alternative graphs, between 5 and 8 tasks for each graph



Experiments: small application graphs

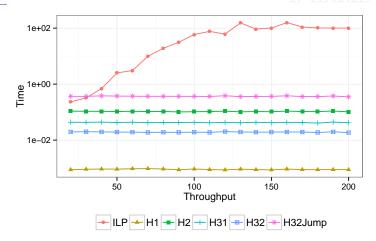
Number of times where each algorithm finds the best 20 alternative graphs, between 5 and 8 tasks for each graph

Experiments: large application graphs



Normalization of cost with the optimal solution 20 alternative graphs, between 50 and 100 tasks for each graph

Experiments: large application graphs



Computation time for the heuristics 20 alternative graphs, between 100 and 200 tasks for each graph

- Efficient ILP solver:
 - Optimal solutions for small and medium sized problems
 - Fails for applications with more than 100 tasks
- The naive heuristic H1 gives a good solution with minimal overhead
- More sophisticated heuristics only improve H1 up to 5%
- H1 approach gives solutions whose costs are asymptotically close to the optimal (ILP if possible)

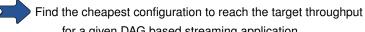


Find the cheapest configuration to reach the target throughput for a given DAG based streaming application

- The issue was to find a suitable distribution between DAGs.
- \Rightarrow We deduce the platform to rent on the Cloud (minimize the rental cost)

Find the cheapest configuration to reach the target throughput for a given DAG based streaming application

- The issue was to find a suitable distribution between DAGs
- \Rightarrow We deduce the platform to rent on the Cloud (minimize the rental cost)
 - In some cases we exhibit algorithms to optimally solve the problem (even if NP-complete in the weak sens)
 - The complexity of the most general case remains open
- \Rightarrow ILP gives a characterization of an optimal solution



- for a given DAG based streaming application
- The issue was to find a suitable distribution between DAGs
- \Rightarrow We deduce the platform to rent on the Cloud (minimize the rental cost)
 - In some cases we exhibit algorithms to optimally solve the problem (even if NP-complete in the weak sens)
 - The complexity of the most general case remains open
- \Rightarrow ILP gives a characterization of an optimal solution
 - Heuristics with good performance (6% from the optimal and asymptotically optimal)

economical cost \iff energy cost

Green computing

- How to take energy into account when we rent resources in the Cloud ?
- · How to associate both economical and energetical criteria

