
Minimizing rental cost for multiple recipe applications in
the Cloud

F. Hana, L. Marchal, J.-M. Nicod, L. Philippe, V. Rehn-Sonigo and H. Sabbah

LIP-ENS Lyon – FEMTO-ST institute - UFC/ENSMM Besançon

Nashville - May 18th, 2016

Introduction and motivation

Overall objective: To provision just enough resources to reach the target
throughput for a given DAG-based streaming application

Veronika.Sonigo@femto-st.fr, May 18th, 2016 2 / 20

Introduction and motivation

Overall objective: To provision just enough resources to reach the target
throughput for a given DAG-based streaming application

Veronika.Sonigo@femto-st.fr, May 18th, 2016 2 / 20

Introduction and motivation

Overall objective: To provision just enough resources to reach the target
throughput for a given DAG-based streaming application

Veronika.Sonigo@femto-st.fr, May 18th, 2016 2 / 20

Introduction and motivation

Overall objective: To provision just enough resources to reach the target
throughput for a given DAG-based streaming application

Veronika.Sonigo@femto-st.fr, May 18th, 2016 2 / 20

Application framework

Each workflow application ϕj produces the same result Φ.

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

ϕ2 1

ϕ2
1

3

ϕ2
2

3

ϕ2
3

3

ϕ2
4

ϕ3

1

ϕ3
1

1

ϕ3
2

1

ϕ3
3

1

ϕ3
4

4

ϕ3
5

4

ϕ3
6

4

ϕ3
7

• Each task ϕj
i has a task type q

• Target throughput ρ
• Each application can be run at a

different throughput ρj

• ρ =
∑

j ρj

Target platform
One processor type per task type
• cq : Rental cost for type q
• rq : Throughput of type q

Find the cheapest configuration to reach the target throughput

Veronika.Sonigo@femto-st.fr, May 18th, 2016 3 / 20

Application framework

Each workflow application ϕj produces the same result Φ.

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

ϕ2 1

ϕ2
1

3

ϕ2
2

3

ϕ2
3

3

ϕ2
4

ϕ3

1

ϕ3
1

1

ϕ3
2

1

ϕ3
3

1

ϕ3
4

4

ϕ3
5

4

ϕ3
6

4

ϕ3
7

• Each task ϕj
i has a task type q

• Target throughput ρ
• Each application can be run at a

different throughput ρj

• ρ =
∑

j ρj

Target platform
One processor type per task type
• cq : Rental cost for type q
• rq : Throughput of type q

Find the cheapest configuration to reach the target throughput

Veronika.Sonigo@femto-st.fr, May 18th, 2016 3 / 20

Problem definition

MinCOST: Minimize the global rental cost C
Given
• an application described by J graphs
• a platform described by processor cost cq and throughput rq

• a target throughput ρ

⇒ select which graphs ϕj are used

⇒ choose their output throughput ρj (ρj = 0 if unused)

⇒ deduce the number of processors xq of each type

to reach the prescribed throughput within minimal cost.

Veronika.Sonigo@femto-st.fr, May 18th, 2016 4 / 20

Problem resolution

Simple case
• The application is described by a single graph

General case

ρ =
∑

j

ρj

• Black box application
• Application graphs without shared task types
• Application graphs with shared task types

Veronika.Sonigo@femto-st.fr, May 18th, 2016 5 / 20

Simple case: Single application graph

• One application described by one single graph ϕ1

• ∀q, the number of machines xq can be easily
computed:

xq =

⌈
nq

rq
· ρ
⌉

• The associated cost Cq

Cq(ρ) =

⌈
nq

rq
· ρ
⌉
× cq

• The final cost C:

C(ρ) =
Q∑

q=1

Cq(ρ) =
Q∑

q=1

⌈
nq

rq
· ρ
⌉
× cq

nq : number of tasks, rq : throughput, cq : cost of type q

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

Veronika.Sonigo@femto-st.fr, May 18th, 2016 6 / 20

General case: Black box applications

• Each graph ϕj = ϕj
1 is one complex task

∀j and ∀j ′(1 ≤ j, j ′ ≤ J) : t(1, j) = t(1, j ′)⇒ j = j ′

• Let ρq the output of ϕj = ϕq

• xq can be found by solving the following linear program:
Minimize C(ρ) =

Q∑
q=1

xqcq

Under the constraint
Q∑

q=1

xqρq > ρ
ϕ1 1

ϕ1
1

ϕ2 2

ϕ2
1

ϕ3 3

ϕ3
1

⇒ This resembles a knapsack problem with repetition using negative
weights and values

Veronika.Sonigo@femto-st.fr, May 18th, 2016 7 / 20

General case: Black box applications

Unbounded Knapsack Problem
Given n objects with value vi and weight wi , and a total capacity of W , how
many copies of each object should we select to maximize the total value
without exceeding weight W ?

ILP formulation with xi the number of copies of item i included in the solution Maximize
∑

xi vi

Under the constraint
∑

xi wi 6 W

Our problem is thus equivalent to a knapsack problem where:
• Items have value (−cq) and weight (−ρq)

• The total capacity is (−ρ).

⇒ The knapsack problem is a (unary) NP-complete problem

⇒ There exists a pseudo-polynomial dynamic program (time complexity
O(Jρ))

Veronika.Sonigo@femto-st.fr, May 18th, 2016 8 / 20

Application graphs without shared task types

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

ϕ2

4

ϕ2
1

5

ϕ2
2

ϕ3

6

ϕ3
1

6

ϕ3
2

6

ϕ3
4

7

ϕ3
5

7

ϕ3
6

• Application Φ can be described by ϕ1, . . . , ϕj , . . . , ϕJ with the same
output result

• Each task ϕj
i from one graph ϕj has a different type from every other

task of an other graph ϕj′

t(i, j) 6= t(i ′, j ′) with 1 ≤ j, j ′ ≤ J and j 6= j ′ and 1 ≤ i ≤ Ij and 1 ≤ i ′ ≤ Ij′

• This problem is unary NP-complete (includes Black Box applications)

⇒ There exists a pseudo-polynomial dynamic program to solve it

Veronika.Sonigo@femto-st.fr, May 18th, 2016 9 / 20

Application graphs without shared task types

A dynamic program to solve this problem
• Let C(ρ, j) be the optimal platform cost to reach ρ using the first j

application graphs

C(ρ, j) =



I1∑
i=1

⌈
n1

t(i,1)

rt(i,1)
· ρ

⌉
× ct(1,k) if j = 1

min
0≤ρj≤ρ

(
C(ρ− ρj , j − 1)+

Ij∑
i=1

⌈
nj

t(i,j)

r(t(i,j))
· ρj

⌉
× ct(i,j)

)
otherwise

⇒ The solution is given by C(ρ, J)

Veronika.Sonigo@femto-st.fr, May 18th, 2016 10 / 20

Application graphs without shared task types

Complexity analysis
• As ∀q, rq ∈ N, ∀j ρj ∈ N
→ There exists a finite number of ρj to test in the previous formulation

• To compute C(ρ, j), all C(ρ′, j ′) with ρ′ ≤ ρ and j ′ ≤ j has to be computed

⇒ The complexity of the elementary computation is O(ρI)

⇒ The complexity of computing C(ρ) is O(ρ2IJ)

Veronika.Sonigo@femto-st.fr, May 18th, 2016 11 / 20

Application graphs with shared task types

ϕ1

1ϕ1
1

1ϕ1
2

1ϕ1
3

2

ϕ1
4

3

ϕ1
5

ϕ2

1

ϕ2
1

3

ϕ2
2

ϕ3

1

ϕ3
1

1

ϕ3
2

1

ϕ3
4

4

ϕ3
5

4

ϕ3
6

• One application is described by several graphs which share task types

∃ϕj , ϕj′(1 6 j, j ′ 6 J, j 6= j ′), ∃ i (1 6 i 6 Ij),

∃ i ′(1 6 i ′ 6 Ij′) s.t. t(i, j) = t(i ′, j ′)

⇒ A processor may be shared between several application graphs

Veronika.Sonigo@femto-st.fr, May 18th, 2016 12 / 20

Application graphs with shared task types

ILP formulation

Minimizing C(ρ) =
∑Q

q=1 xq · cq

under the constraints
• ρ has to be at least the sum of ρj

J∑
j=1

ρj > ρ

• For each type q we have to provision enough resources (xq)

∀q xq · rq >
J∑

j=1

(Ij∑
i=1|t(i,j)=q

ρj

)
,

with q = t(i, j) and xq ∈ N

The complexity of this case is still open
unary or binary NP-complete

Veronika.Sonigo@femto-st.fr, May 18th, 2016 13 / 20

Application graphs with shared task types

ILP formulation

Minimizing C(ρ) =
∑Q

q=1 xq · cq

under the constraints
• ρ has to be at least the sum of ρj

J∑
j=1

ρj > ρ

• For each type q we have to provision enough resources (xq)

∀q xq · rq >
J∑

j=1

(Ij∑
i=1|t(i,j)=q

ρj

)
,

with q = t(i, j) and xq ∈ N

The complexity of this case is still open
unary or binary NP-complete

Veronika.Sonigo@femto-st.fr, May 18th, 2016 13 / 20

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph

3. H2: random walk

4. H31: stochastic descent

5. H32/H32Jump: steepest gradient

Veronika.Sonigo@femto-st.fr, May 18th, 2016 14 / 20

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random ρ = (ρ1, ρ2, . . . , ρJ)

2. H1: best graph

3. H2: random walk

4. H31: stochastic descent

5. H32/H32Jump: steepest gradient

Veronika.Sonigo@femto-st.fr, May 18th, 2016 14 / 20

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph ρ = (0, . . . , ρ, . . . , 0)

3. H2: random walk

4. H31: stochastic descent

5. H32/H32Jump: steepest gradient

Veronika.Sonigo@femto-st.fr, May 18th, 2016 14 / 20

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph
3. H2: random walk

• ϕj1 and ϕj2 are randomly chosen

(. . . , ρj1, . . . , ρj2, . . .)→ (. . . , ρj1−δ, . . . , ρj2+δ, . . .)

(. . . , ρj1, . . . , ρj2, . . .)→ (. . . , 0, . . . , ρj2+ρj1 . . .) if ρJ1 < δ

4. H31: stochastic descent

5. H32/H32Jump: steepest gradient

Veronika.Sonigo@femto-st.fr, May 18th, 2016 14 / 20

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph

3. H2: random walk
4. H31: stochastic descent

• Same as H2 except that we keep the same solution as long as we do not
obtain any improvement

5. H32/H32Jump: steepest gradient

Veronika.Sonigo@femto-st.fr, May 18th, 2016 14 / 20

Application graphs with shared task types

Heuristic approaches

ρ = (ρ1, ρ2, . . . , ρJ)

1. H0: random

2. H1: best graph

3. H2: random walk

4. H31: stochastic descent
5. H32/H32Jump: steepest gradient

• H32/H32Jump same as H2 except we test all possible throughput fraction
exchanges and keep the best until no more improvement is possible

• H32Jump allows to explore solution that increases C(ρ)

Veronika.Sonigo@femto-st.fr, May 18th, 2016 14 / 20

Illustrating example

ϕ1

2ϕ1
1

4ϕ1
2

ϕ2

3ϕ2
1

4ϕ2
2

ϕ3

1ϕ3
1

2ϕ3
2

Processor type ρ cost
P1 t1 10 10
P2 t2 20 18
P3 t3 30 25
P4 t4 40 33

Results
I L P H1 H 2 H 32 JUMP

ρ ρ1 ρ2 ρ3 cost ρ1 ρ2 ρ3 cost ρ1 ρ2 ρ3 cost ρ1 ρ2 ρ3 cost
10 0 0 10 28 0 0 10 28 0 0 10 28 0 0 10 28
40 40 0 0 69 40 0 0 69 40 0 0 69 40 0 0 69
50 10 30 10 86 0 0 50 104 10 30 10 86 10 30 10 86

130 30 90 10 220 0 0 130 256 30 90 10 220 90 30 10 224
140 0 120 20 237 0 140 0 257 0 120 20 237 0 120 20 237
150 0 150 0 257 0 150 0 257 0 150 0 257 0 150 0 257
200 20 180 0 333 0 200 0 340 20 180 0 333 20 180 0 333

Veronika.Sonigo@femto-st.fr, May 18th, 2016 15 / 20

Experiments: small application graphs

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.94

0.96

0.98

1.00

50 100 150 200
Throughput

N
or

m
al

iz
at

io
n(

C
os

t)

● ILP H1 H2 H31 H32 H32Jump

ILP: Gurobi
Simulator: Python

Normalization of cost with the optimal solution
20 alternative graphs, between 5 and 8 tasks for each graph

Veronika.Sonigo@femto-st.fr, May 18th, 2016 16 / 20

Experiments: small application graphs

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

25

50

75

100

50 100 150 200
Throughput

C
ou

nt

● ILP H1 H2 H31 H32 H32Jump

Number of times where each algorithm finds the best
20 alternative graphs, between 5 and 8 tasks for each graph

Veronika.Sonigo@femto-st.fr, May 18th, 2016 16 / 20

Experiments: large application graphs

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.97

0.98

0.99

1.00

50 100 150 200
Throughput

N
or

m
al

iz
at

io
n(

C
os

t)

● ILP H1 H2 H31 H32 H32Jump

Normalization of cost with the optimal solution
20 alternative graphs, between 50 and 100 tasks for each graph

Veronika.Sonigo@femto-st.fr, May 18th, 2016 17 / 20

Experiments: large application graphs

●
●

●

● ●

●

●

●

●
●

●

●

● ●
●

● ● ● ●

1e−02

1e+00

1e+02

50 100 150 200
Throughput

T
im

e

● ILP H1 H2 H31 H32 H32Jump

Computation time for the heuristics
20 alternative graphs, between 100 and 200 tasks for each graph

Veronika.Sonigo@femto-st.fr, May 18th, 2016 17 / 20

Summary

• Efficient ILP solver:
• Optimal solutions for small and medium sized problems
• Fails for applications with more than 100 tasks

• The naive heuristic H1 gives a good solution with minimal overhead
• More sophisticated heuristics only improve H1 up to 5%
• H1 approach gives solutions whose costs are asymptotically close to the

optimal (ILP if possible)

Veronika.Sonigo@femto-st.fr, May 18th, 2016 18 / 20

Conclusion

Find the cheapest configuration to reach the target throughput

for a given DAG based streaming application

• The issue was to find a suitable distribution between DAGs

⇒ We deduce the platform to rent on the Cloud (minimize the rental cost)

• In some cases we exhibit algorithms to optimally solve the problem
(even if NP-complete in the weak sens)

• The complexity of the most general case remains open

⇒ ILP gives a characterization of an optimal solution

• Heuristics with good performance (6% from the optimal and
asymptotically optimal)

Veronika.Sonigo@femto-st.fr, May 18th, 2016 19 / 20

Conclusion

Find the cheapest configuration to reach the target throughput

for a given DAG based streaming application

• The issue was to find a suitable distribution between DAGs

⇒ We deduce the platform to rent on the Cloud (minimize the rental cost)

• In some cases we exhibit algorithms to optimally solve the problem
(even if NP-complete in the weak sens)

• The complexity of the most general case remains open

⇒ ILP gives a characterization of an optimal solution

• Heuristics with good performance (6% from the optimal and
asymptotically optimal)

Veronika.Sonigo@femto-st.fr, May 18th, 2016 19 / 20

Conclusion

Find the cheapest configuration to reach the target throughput

for a given DAG based streaming application

• The issue was to find a suitable distribution between DAGs

⇒ We deduce the platform to rent on the Cloud (minimize the rental cost)

• In some cases we exhibit algorithms to optimally solve the problem
(even if NP-complete in the weak sens)

• The complexity of the most general case remains open

⇒ ILP gives a characterization of an optimal solution

• Heuristics with good performance (6% from the optimal and
asymptotically optimal)

Veronika.Sonigo@femto-st.fr, May 18th, 2016 19 / 20

Perspectives

economical cost⇐⇒ energy cost

Green computing
• How to take energy into account when we rent resources in the Cloud ?
• How to associate both economical and energetical criteria

Veronika.Sonigo@femto-st.fr, May 18th, 2016 20 / 20

	Introduction and motivation
	Algorithmic solutions
	Heuristics for the general case
	Experiments
	Conclusion

