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Outer Product and Matrix Multiplication

The Outer Product :a1
a2
a3

⊗
b1

b2
b3

 =

a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3


The Matrix Multiplication (Cannon’s Algorithm) :

If A =
(
A1 . . . AN

)
and B =

B1
. . .
BN

 with Ai =

a1,i
. . .
aN,i

 and

Bj =
(
b1,j . . . bN,j

)
then

A× B =
N∑

i=1

Ai ⊗ Bi
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Allocation of a Parallel Matrix Multiplication

Inputs :

Two matrices A =
(
A1 . . . AN

)
and B =

B1
. . .
BN


A set of p processors Pk , each with a speed sk .

Output :
For each Al ⊗ Bl and each processor Pk , the set Wl ,k of the
tasks ai ,lbl ,j associated to it.
For each processor Pk the contents of its local memory,
mk,l ,row and mk,l ,columns .
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Allocation of a Parallel Matrix Multiplication

We want an optimal makespan (computation time). Therefore
|Wl ,k | is fixed and correlated to the relative speed of Pk .
We want to minimize communication. Therefore |mk,l ,row | and
|mk,l ,columns | must be as low as possible.

Problem
Given a platform of processors with known speeds, return an
makespan-optimal scheduling that minimize the amount of
communication.
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Formal Problem Statement

Problem
Given a square [0, 1]× [0, 1] and a set of areas, return a partition of
the square into areas of the sizes given which minimizes the sum of
the half-perimeter of the covering rectangles.

2/5+ 3/5
+ 3/5+ 2/5
+ 3/5+ 3/5
+ 2/5+ 3/5
= 21/5
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A Remark

To optimize the data reuse it is better to give area shaped as
squares.

In fact it is the lower bound (half-perimeter ≥ 2 ∗
√
surface).
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An Already Studied Problem

More constrained problem : Split a square in several rectangle
of fixed area and minimize the semi-perimeters.
Already studied, NP-complete but there exists a
5/4-approximation (Nagamochi et al.) that becomes a
2√
3
-approximation ( 2√

3
' 1.15) for slightly heterogeneous

platforms (Fügenschuh et al.).
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Nagamochi’s Algorithm

A divide and conquer algorithm :
Sort the processors by increasing speed.
Recursively split the current rectangle in two and apply the
algorithm on each subrectangle.

Case 1

≥ 1
3 ≥ 1

3

Case 2

Only one
processor
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A New Approach for Pathological Cases (Lastovetsky et al.)

The problem is rectangle with an aspect ratio greater than 3.
When a rectangle is too elongated we transform it into a
square.

−→

12



Introduction
Approximation Algorithm

Discrete Partitioning
Cuboid Partitioning

Perspectives

Related Work
A New Algorithm (NRRP)
Sketch of Proof
Practical Results

A New Algorithm

A variant of the divide and conquer algorithm :
Sort the processors by increasing speed.
Recursively split the current rectangle in two :

If it is possible in two rectangle with aspect ratio under 3.
Else into a squared zone and its complement.

≥ 1
3 ≥ 1

3

Result : A
√

3
2 -approximation (

√
3
2 ' 1.22).
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Non-Rectangular Recursive Partitioning (NRRP)

NRRP is a refinement of the previous algorithm where some new
subcases are added :

≥ 2
5 ≥ 2

5

Result : A 2√
3
-approximation ( 2√

3
' 1.15).
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Sketch of Proof

We distinguish two kinds of zones created during a step :
Simple zones : terminal zones allocated to a single processor.
Composed zones : union of future simple zones on which we
recursively apply the algorithm.

R1

Z2
Z3

Composed zone

Simple zones
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Local Invariants

Lemma
At each call of NRRP, the produced composed zones are rectangles
with an aspect ratio less than 2.5.

Lemma
At each call of NRRP, if {Z1, . . . ,Zk} is the set of the produced
simple zones, AZi their areas and wZi and hZi the width and the
height of their covering rectangles then :

k∑
i=1

wZi + hZi

2
k∑

i=1

√
AZi

≤ 2√
3
.

We recall that a+b
c+d ≤ max( a

c ,
b
d ).

16



Introduction
Approximation Algorithm

Discrete Partitioning
Cuboid Partitioning

Perspectives

Related Work
A New Algorithm (NRRP)
Sketch of Proof
Practical Results

Experimental Validation

We propose an experimental validation :
Platforms are composed of n CPUs, m Xeon Phi accelerators
and p GPUs (n ∈ {1, 2, 4, 8, 12, 16, 24, 32, 64}, m, p ∈ [0, 8]).
Accelerators are between 15 and 25 times faster than CPU and
GPUs are between 25 and 35 times faster than CPUs.
We compare NRRP with Nagamochi’s one and the Column
Based approach.
Column Based heuristic computes (with dynamic
programming) the best possible partitioning under the
assumption that the original square is split into several
columns.

17



Introduction
Approximation Algorithm

Discrete Partitioning
Cuboid Partitioning

Perspectives

Related Work
A New Algorithm (NRRP)
Sketch of Proof
Practical Results

Practical Results

Column Based is good for very large platforms (below 1.05
times the bound) but this ratio greatly increase for small
instances (can be more than 1.5 times the bound). In contrast,
NRRP and Nagamochi are far better on small instances, with a
little advantage for NRRP on really small ones.
NRRP has a far smaller worst case, around 1.1 times the
bound, the worst ratio is 1.3 for Nagamochi and more than 1.5
for Colum Based.
A heuristic which chooses the best of the three has a worst
case of 1.08 times the bound, below 1.02 on average.
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Discrete Partitioning

In practice we are interested in splitting matrices, that are
discrete squares.
Therefore we can’t cut it anywhere.
Direct rounding can be quite bad for load balancing.
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Recursive decomposition

Definition (q-square)

We denote as q-squares all the subsquares of the square
[1,N]× [1,N] which are of the form
[1+ n1 × 2q, (n1 + 1)× 2q]× [n2 × 2q, (n2 + 1)× 2q] where
n1, n2 ∈ [0,N/2q − 1]2.

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
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Hilbert Curve

Property
If Sq is a q-square, then there exists an integer n such that
H([n, n + 4q − 1]) = Sq.

Property

For all n ∈ [1,N2 − 1], if we denote (i1, j1) = H(n) and
(i2, j2) = H(n + 1), then i1 = i2 or j1 = j2.

22



Introduction
Approximation Algorithm

Discrete Partitioning
Cuboid Partitioning

Perspectives

Hilbert’s Curve
Algorithm
Conclusion

Algorithm

Algorithm 1: Fractal Partition
stot = 0
foreach k ∈ [1, p] do

Ak = H([stot , stot + sk ])
stot = stot + sk + 1

s1 = 17
s2 = 4
s3 = 19
s1 = 24

Claim

This is a 3
√

3√
11

-approximation (' 1.56).
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Conclusion

First approximation ratio for the discrete problem.
In practice a more trivial solution works better.

1 2 1 2

However space-filling curves are a very classical way to
partition data set.
It also seems easier to generalize for higher dimension and for
a variant with sparse matrices.
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Motivation

We recall that the matrix multiplication of scheduling is just
the scheduling of the equivalent basic tasks :

ti ,j ,k : ci ,j ← ci ,j + ai ,kbk,j

Cannon’s algorithm schedules the tasks by set with fixed k .
In this section we propose to schedule the whole set of tasks.

⇔

A new problem : division of a cube (or a cuboid for non-square
matrix) into volumes minimizing the half-surface of the
covering cuboid.
Problem without pre-existing work as far as we know.

26



Introduction
Approximation Algorithm

Discrete Partitioning
Cuboid Partitioning

Perspectives

Motivation
Approximation Algorithm

Approximation Algorithm

We prove the NP-completeness of the problem.
We propose a variant of NRRP in the 3D case (3D-NRRP)
with only two cases.

The algorithm can be shown to be a 5
62/3 -approximation

( 5
62/3 ' 1.51).
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Perspectives

Add new analysis to 3D-problem (in particular its discrete
variant), if possible find an easier NP-completeness proof.
Begin the study of nD-problem (tensor product).
Begin the study of a similar problem but with sparse matrices
(Fast Multipole Method).
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