
– Practical Scalable Consensus 1

Distributed Algorithms for Resilient Middle-
ware in HPC: consensus, (((((((((((

failure detection

Scheduling Workshop in Nashville
May 19, 2016

Thomas Herault1, Aurélien Bouteiller1,
George Bosilca1,
Marc Gamell2, Keita Teranishi3,
Manish Parashar2, Jack Dongarra1,4

1 – University of Tennessee Knoxville
2 – Rutgers University
3 – Sandia National Laboratories
4 – Oak Ridge National Laboratories, Manchester University

Practical Scalable Consensus

Outline

1. Introduction
Motivation and Context
Formal Framework
State of the Art

2. Early Returning Agreement

3. Performance Evaluation

4. A word about Failure Detection

5. Conclusion

– Practical Scalable Consensus – 1. Introduction 2

Consensus

[consensus] is fundamental to distributed computing unreliable
environments: it consists in agreeing on a piece of data upon which
the computation depends

M.Fischer, Brief Survey on Consensus

D.Davies, J.F.Wakerly“Synchronization and Matching in Redundant Systems”,
IEEE Trans. on Comp., 1978. Context: Triple Modular Redundancy. Conclusion:
Agreement through voting can tolerate only a minority of faulty processors.

Consensus is ubiquitous in distributed systems with high-availability (e.g.
distributed database). It is a critical component in Fault-Tolerant HPC systems.

– Practical Scalable Consensus – 1. Introduction 3

Consensus in the context of HPC

Consider the case of a broadcast implemented with a binary tree.

�

�

× × � �

Failures, that happen during the execution, introduce inconsistencies: not all
processes know that the broadcast operation failed.

Consensus (or agreement) allows to reconcile inconsistent / non-uniform states
due to failures.

It must be reliable.
It must be efficient, especially in the failure-free case.

– Practical Scalable Consensus – 1. Introduction 4

ULFMRESILIENCE EXTENSIONS FOR MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Taking into account user’s feedback, the ULFM implementation has been improved, increasing its scalability and
reliability, and reducing the overheads of all fault-tolerance operations.

CONTINUE ACROSS ERRORS
In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

EXCEPTIONS IN CONTAINED DOMAINS
Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

FULL-CAPABILITY RECOVERY
Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Spaw
n

Bcast

ULFM-1.1 RELEASED

FUNCTIONALITY COVERAGE
Support for non-blocking version of the agreement MPI_Comm_Iagree

Compliance with the latest ULFM specification draft

Support for agreement on intercommunicators

PERFORMANCE IMPROVEMENT
New logarithmic algorithm to perform agreement (see our paper presentation @SC’15, Tue. 4:30pm Room 18CD)

New algorithm to perform communicator revocation (see our paper at EuroMPI’15, “Plan B: Interruption of Ongoing MPI Operations to
Support Failure Recovery”)

Faster algorithm for Context ID allocation, allowing a better scalability of communicators creation and recovery

RELIABILITY IMPROVEMENT
Improved support of basic network layer (TCP, Shared Memory)

Added support for High-Performance Networks (Open IB, uGNI)

Tuned collective module enabled by default, exhibiting performance boost compared to basic

Runtime integration (PBS/ALPS)
DOWNLOAD THE LATEST RELEASE

http://fault-tolerance.org/

– Practical Scalable Consensus – 1. Introduction 5

ULFM Agreement Specification

int MPIX Comm agree(MPI Comm comm, int *flag);

MPIX COMM AGREE(COMM, FLAG, IERROR)

INTEGER COMM, FLAG, IERROR

comm the communicator on which to apply the consensus

flag An in/out integer: in input, the process participation, in output,
the result of the agreement on these ints (bitwise and)

return value An error code if new process failures were discovered during the
agreement, or success

The operation implements an agreement on the couple (flag, return code):
all surviving process, despite any failure have the same values in each (even if
the return code is an error, flag is defined).

– Practical Scalable Consensus – 1. Introduction 6

Specification

Correctness

Termination Every living process eventually decides.

Integrity Once a living process decides a value, it remains decided on that
value.

Agreement No two living processes decide differently.

Participation When a process decides upon a value, it contributed to the
decided value.

Traditional consensus relies on Validity
This is because one value is chosen.

ULFM does not require the consensus to be uniform

– Practical Scalable Consensus – 1. Introduction 7

Assumptions

Processes have totally ordered, unique identifiers

Any process belonging to a group knows what processes belong to that
group

Any process may be subject to a permanent failure

The network does not lose, modify, nor duplicate messages, but
communication delays have unknown bounds

The system provides a Perfect Failure Detector (P):
– All incorrect processes are eventually suspected by all correct processes
– No correct process is ever suspected by any process

The operation of the consensus is associative and commutative, and
idempotent, with a known neutral element

– Practical Scalable Consensus – 1. Introduction 8

Why not use Paxos?

Proposer A

Proposer B

Acceptor X

Acceptor Y

Acceptor Z

Learner L

A B X Y Z L

Prepare

Prepare
Prepare

PrepareResp

PrepareResp

Accept
Accept

Accept

Accepted

PAXOS provides reliability in persistant
environments (intermittent failures and
persistent storage space; message loss and
dupplication)

It relies on replication of information: requests
are sent to multiple processes, and a majority
must acknowledge

Given our different requirements, we can
achieve lower latencies in the failure-free case,

Decision in PAXOS is upon one proposed value,
while we need a combination of proposed values

– Practical Scalable Consensus – 1. Introduction 9

Multiple Phase Commit Agreements

“Scalable distributed consensus to
support MPI fault tolerance”:

Three Phase Commit:
– Ballot number is chosen
– Value is proposed
– Value is committed

Reliable P.I.F. (O(log2(n)) comm.,
O(1) comp.)

“A Log-scaling Fault Tolerant
Agreement Algorithm for a Fault
Tolerant MPI”:

Two Phase Commit
– Fan-in / Fan-out approach

Fatal errors when the root dies
during the agreement

O(log2(n)) comm., but O(n) comp.

– Practical Scalable Consensus – 1. Introduction 10

Outline

1. Introduction

2. Early Returning Agreement
Principle of the Algorithm
Trees Topologies
Algorithm
Multiple Agreements and Implementation

3. Performance Evaluation

4. A word about Failure Detection

5. Conclusion

– Practical Scalable Consensus – 2. Early Returning Agreement 11

Principle and Notation

parent

left child right child

↑

↓

?

?

Processes are arranged following a mendable tree
topology: given a list of known dead processes, they
communicate or monitor the liveliness of only their
neighbors in that topology.

The algorithm is a resilient version of Fan-in / Fan-out:
all contributions (noted) are reduced along the tree
up to the root, that broadcasts it

Deciding the result of the consensus for a given process
consists in remembering the return value of the
consensus, broadcasting it to the current children, and
returning as if the consensus was completed.

– Practical Scalable Consensus – 2. Early Returning Agreement 12

Principle and Notation

parent

left child right child

↑

↓

?

?

Alive processes can be in 3 states:

– ?, if they have not entered the consensus yet
– ↑, if they are waiting from the contribution of their

children
– ↓, if they have sent their contribution to their parent

and are waiting for the decision
– , if they have received the decision

There are 3 types of messages:

– , when a process sends its participation to a parent
– , when a process broadcasts the decision to its

children
– ?, when a process enquired about a possible result of a

completed consensus

Processes can monitor () other processes for failures

– Practical Scalable Consensus – 2. Early Returning Agreement 12

Mendable Tree for Consensus

2 3

1

6 74 5

8 9 10 11 12 13 14 15

2

1

74 5

8 9 10 11 12 14 15

The Fan-in Fan-out tree used during the consensus is mended, as failures are
discovered during the execution.
The mending rule is simple: processes are arranged according to their (MPI)
rank following a breath-first search of the tree, assuming no failure (left tree)

– Practical Scalable Consensus – 2. Early Returning Agreement 13

Mendable Tree for Consensus

2 3

1

6 74 5

8 9 10 11 12 13 14 15

3

6 74 5

8 9 10 11 12 13 14 15

Nodes replace their parents by the highest-ranked alive ancester in the tree in
case of failure.
Processes without an alive ancestor in the original tree connect to the lowest
alive processor as their parent. The lowest alive processor is always the root of
the tree

– Practical Scalable Consensus – 2. Early Returning Agreement 13

Mendable Tree for Consensus

2 3

1

6 74 5

8 9 10 11 12 13 14 15

8 9 10 11 12 13 14 15

If half the processes die, the tree can, in the worst case, degenerate to a
np/2-degree star

– Practical Scalable Consensus – 2. Early Returning Agreement 13

Architecture-Aware Tree

To map the hardware network hierarchy, two levels of trees are joined: In the
example, representative processes of nodes (node0, node1, node2, node3) are
interconnected following a binary tree, and processes belonging to the same node
(16 process / node in this case) are also connected following independent binary
trees.

– Practical Scalable Consensus – 2. Early Returning Agreement 14

No Failure

↑ ↑

↑

↑ ↑↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Initially, all processes are in the state ↑ to provide their participation, and the
participation of their descendents to their ascendent. Each process monitors its

descendents for possible failures () until they have participated.

– Practical Scalable Consensus – 2. Early Returning Agreement 15

No Failure

↑ ↑

↑

↑ ↑↑ ↑

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Leaves can send their participation () to their parent, and enter the

broadcasting state ↓. They start monitoring their parent for possible failures ()

– Practical Scalable Consensus – 2. Early Returning Agreement 15

No Failure

↑ ↑

↑

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Once a process has aggregated the participation of all its descendents, it can
forward the information upward and do the same

– Practical Scalable Consensus – 2. Early Returning Agreement 15

No Failure

↓ ↓

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Once a process has aggregated the participation of all its descendents, it can
forward the information upward and do the same
The root process can decide as soon as all descendents have contributed, it
enters the decided state , starts broadcasting the decided message () to its
descendents, and stops monitoring processes for failures

– Practical Scalable Consensus – 2. Early Returning Agreement 15

No Failure

↓ ↓

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

When a process receives a decision message (), it decides, enters the decided
state , and broadcasts the decision to its descendents, until all processes have
decided

– Practical Scalable Consensus – 2. Early Returning Agreement 15

No Failure

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

When a process receives a decision message (), it decides, enters the decided
state , and broadcasts the decision to its descendents, until all processes have
decided

– Practical Scalable Consensus – 2. Early Returning Agreement 15

No Failure

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

When a process receives a decision message (), it decides, enters the decided
state , and broadcasts the decision to its descendents, until all processes have
decided

– Practical Scalable Consensus – 2. Early Returning Agreement 15

No Failure

When a process receives a decision message (), it decides, enters the decided
state , and broadcasts the decision to its descendents, until all processes have
decided

– Practical Scalable Consensus – 2. Early Returning Agreement 15

Failure before participating

↑ ↑

↑

↑↑ ↑

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Process P6 died before participating. P3, its parent, starts monitoring it ()
when it enters the consensus (state ↑).

– Practical Scalable Consensus – 2. Early Returning Agreement 16

Failure before participating

↑ ↑

↑

↑↑ ↑

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Processes P12 and P13 will send their participation () to P6, these messages are

lost, and they start monitoring () P6. P3 eventually discovers the death of P6,

and starts monitoring () its new descendents P12 and P13.

– Practical Scalable Consensus – 2. Early Returning Agreement 16

Failure before participating

↑ ↑

↑

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Processes P12 and P13 eventually discover the death of P6, and take P3 as their

parent, sending it their participation (). They also start monitoring () their
new parent, P3.

– Practical Scalable Consensus – 2. Early Returning Agreement 16

Failure before participating

↓ ↓

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The tree being fixed, the information simply flows along the mended tree as
initially.

– Practical Scalable Consensus – 2. Early Returning Agreement 16

Failure before participating

↓ ↓

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The tree being fixed, the information simply flows along the mended tree as
initially.

– Practical Scalable Consensus – 2. Early Returning Agreement 16

Failure before participating

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The tree being fixed, the information simply flows along the mended tree as
initially.

– Practical Scalable Consensus – 2. Early Returning Agreement 16

Failure before participating

↓ ↓ ↓ ↓ ↓ ↓

The tree being fixed, the information simply flows along the mended tree as
initially.

– Practical Scalable Consensus – 2. Early Returning Agreement 16

Failure before participating

The tree being fixed, the information simply flows along the mended tree as
initially.

– Practical Scalable Consensus – 2. Early Returning Agreement 16

Failure After Participating

↓ ↓

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Process P6 fails, but after participating to the current consensus.

– Practical Scalable Consensus – 2. Early Returning Agreement 17

Failure After Participating

↓ ↓

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

If it was a leaf, that would not prevent the consensus to complete. Since it has
children, and they have not received the decision () yet, they are monitoring

() it, and eventually discover the death

– Practical Scalable Consensus – 2. Early Returning Agreement 17

Failure After Participating

↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

They send their participation () back to their grand-parent, P3, starting to

monitor it (). This ensure that if P6 died before forwarding it upward, their
participartion () is not lost. This also reconnects the tree.

– Practical Scalable Consensus – 2. Early Returning Agreement 17

Failure After Participating

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Even if P3 is already done with the current consensus, it remembers the result
(ERA property), and provides the result () again, allowing the information to
continue flowing down the tree.

– Practical Scalable Consensus – 2. Early Returning Agreement 17

Failure After Participating

Even if P3 is already done with the current consensus, it remembers the result
(ERA property), and provides the result () again, allowing the information to
continue flowing down the tree.

– Practical Scalable Consensus – 2. Early Returning Agreement 17

Failure of Root

↓

↓ ↓↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

If the root of the tree dies after it started broadcasting the decision, but before it
could reach all its children, the ones that did not receive the decision () are still

monitoring that dead root ().

– Practical Scalable Consensus – 2. Early Returning Agreement 18

Failure of Root

↓

↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

?

If a process becomes the root (lowest identifier), but was waiting for a decision,
it asks all its new children if they received a decision before, by sending the

message (?), and monitoring them ().

– Practical Scalable Consensus – 2. Early Returning Agreement 18

Failure of Root

↓

↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

If one of them has the decision, it answers with it and the root can decide and
broadcast (). If none has it, they provide their participation (), if they reached
that step, and wait for the decision of the new root.

– Practical Scalable Consensus – 2. Early Returning Agreement 18

Failure of Root

↓ ↓

↓ ↓ ↓ ↓

The broadcast of the decision () then continues along the tree

– Practical Scalable Consensus – 2. Early Returning Agreement 18

Failure of Root

↓ ↓ ↓ ↓

The broadcast of the decision () then continues along the tree

– Practical Scalable Consensus – 2. Early Returning Agreement 18

Failure of Root

The broadcast of the decision () then continues along the tree

– Practical Scalable Consensus – 2. Early Returning Agreement 18

Implementation

Agreements are identified by a tuple (CID,CEPOCH,ANUMBER):

CID is the communicator Identifier

CEPOCH Epoch of the communicator – Epochs are changed every time a
new communicator is created, and reflect how many failures were
known at the time of creation

ANUMBER is the sequence number of the current agreement.

Current values of the agreements, progress status, and past values of past
agreements are stored in hash tables.
The ERA is implemented at the BTL level, below the matching and message
layer mechanisms.

– Practical Scalable Consensus – 2. Early Returning Agreement 19

Garbage Collection

When multiple consensus are executed on the same group of processes, processes
executing ERA need to remember each consensus result. This can lead to
memory exhaustion.
ERA implements a Garbage Collection mechanism to forget past consensus that
will not be requested in the future.
That mechanism is implemented using the consensus operation itself: in addition
to the consensus value, processes agree in the message on past consensus that
can be collected.

How to cleanup?

The last consensus is cleaned up by introducing an asynchronous ERA in the
destructor of the communicator.
The result of this last ERA does not need to be remembered: if the communicator
has been released, then all processes participated, and the return value is ignored.

– Practical Scalable Consensus – 2. Early Returning Agreement 20

Tree-Rebalancing

As processes crash, the Fan-in / Fan-out tree used to implement the two phases
of the consensus can become unbalanced.

To implement the ULFM specification, all processes must agree on a list of failed
nodes. Trees can be re-balanced when starting a new agreement based on that
information.

– Practical Scalable Consensus – 2. Early Returning Agreement 21

Outline

1. Introduction

2. Early Returning Agreement

3. Performance Evaluation
Agreement Performance
S3D and FENIX
MiniFE and LFLR Framework

4. A word about Failure Detection

5. Conclusion

– Practical Scalable Consensus – 3. Performance Evaluation 22

Environment

NICS Darter: Cray XC30 (cascade)
– ugni transport layer, with Aries

interconnect
– sm transport layer for shared

memory
– Scalability runs: 16 - 6,500

processes

Benchmark:
– MPIX COMM AGREE in loop
– Measure duration:

– before failure
– during failure
– stabilizing after failure
– after stabilization

– Practical Scalable Consensus – 3. Performance Evaluation 23

Agreement scalability in the failure-free case

���

����

����

����

����

����

����

����

����

����

��� ��� ��� ���� ���� ���� �� �� ��

�
�

����������

���

����������
�����������������
���������������
����������������������

– Practical Scalable Consensus – 3. Performance Evaluation 24

ERA performance depending on the tree topology

���

���

���

���

����

����

����

����

�� �� �� �� �� ��

�
�

����������

��������������������������

��������������������
������������������
�����������������
��������������������������
����������������������

– Practical Scalable Consensus – 3. Performance Evaluation 25

Post Failure Agreement Cost

�������

�������

�������

�������

�������

�������

�� �� �� �� �� ��
����������

��������������������������������
����������������������������

�������

�������

�������

�������

�
�

�����������������
������������������

�������

�������

�������

�������

���������������������������������������

���������������������

��
�

��
�

– Practical Scalable Consensus – 3. Performance Evaluation 26

S3D and FENIX

S3D

Highly parallel method-of-lines solver for partial differential equations

first-principles-based direct numerical simulations of turbulent combustion

ported to all major platforms, demonstrates good scalability up to nearly
200K cores,

FENIX

Online, Transparent recovery framework

Encapsulates mechanisms to transparently
– capture failures through ULFM return codes,
– re-spawn new processes on spare nodes when possible,
– fix failed communicators using ULFM capabilities,
– restore application state, and return the execution control back to the

application

– Practical Scalable Consensus – 3. Performance Evaluation 27

FENIX & S3D Performance

0

5

10

15

20

25

16 32 64 128
256

512
1024

O
v
e
rh

e
a
d

o
f

R
e
c
o
v
e
ry

(s
)

Number of simultaneous core failures

shrink with Log2phases
shrink with ERA

1
3
3
1

2
1
9
7

3
3
7
5

4
0
9
6

4
9
1
3
0

4
9
1
3
1

4
9
1
3
2

5
8
3
2

6
8
5
9

8
0
0
0

9
2
6
1

Number of cores

25

20

15

10

5

0

Simultaneous failures on an increasing
number of cores, over 2197 total cores

256-cores failure (i.e., 16 nodes) on an
increasing number of total cores

– Practical Scalable Consensus – 3. Performance Evaluation 28

MiniFE and LFLR Framekwork

MiniFE

Part of Mantevo mini-applications suite

MiniFE performs a linear system solution with relatively quick mesh
generation and matrix assembly steps.

Modified version: performs a time-dependent PDE solution, where each
time step involves a solution of a sparse linear system with the Conjugate
Gradient (CG) method

LFLR Framework

Local Failure Local Recovery is a resilient application framework

leverages ULFM to allow on-line application recovery from process loss
without the traditional checkpoint/restart

layer of abstraction classes to support commit and restore methods

Works with active spare processes pool

– Practical Scalable Consensus – 3. Performance Evaluation 29

MiniFE and LFLR Performance

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

512	 1024	 2048	

Ex
ec
u&

on
	 T
im

e	
(in

	 se
co
nd

s)
	

Number	 of	 Processes	

Log2phase	

ERA	

0	
5	

10	
15	
20	
25	
30	
35	
40	

512	 1024	 2048	
Number	 of	 processes	

Process and communicator recovery Global agreement during 20 time steps.

– Practical Scalable Consensus – 3. Performance Evaluation 30

Outline

1. Introduction

2. Early Returning Agreement

3. Performance Evaluation

4. A word about Failure Detection

5. Conclusion

– Practical Scalable Consensus – 4. A word about Failure Detection 31

– Failure Detection – 4. A word about Failure Detection 32

A word about the Failure Detection

Scheduling Workshop in Nashville
May 19, 2016

Aurélien Bouteiller1, George Bosilca1, Am-
ina Guermouche1, Thomas Herault1, Yves
Robert2, Pierre Sens3, Jack Dongarra1,4

1 – University of Tennessee Knoxville
2 - ENS Lyon
3 - Universite Paris 6

4 – Oak Ridge National Laboratories, Manchester University

Failure Detection and Propagation

Problem Statement

OS can notify some failures (process failure)

Hardware can notify some failures (unable to deliver a message)

Some failures, however, remain silent
– We are still talking about crashes

How to detect failures reliably with the least resource usage, and with low
latency.

Heartbeats

– Failure Detection – 4. A word about Failure Detection 33

Heartbeat Failure Detector

observer

observee

ξ

φ

ξ

Definition

Pull heartbeat: every ξ time units, the observer sends a heartbeat request
message to an observee. When an observee receives a heartbeat request
message, it answers immediately with a heartbeat message. If the observer does
not receive a heartbeat message at most φ time units after sending a request, it
suspects the observee to have failed.

– Failure Detection – 4. A word about Failure Detection 34

Heartbeat Failure Detector

observer

emittor

η η

δ
δ

δ

Definition

Push heartbeat: every η time units, the emittor sends a heartbeat message to
its observer. If the observer of the emittor does not receive a message within δ
time units, it suspects the emittor to have failed.

– Failure Detection – 4. A word about Failure Detection 35

Ring of Observers

8

7

6
5

4

3

2
1

0

Emitters / Observers are arranged into a ring. Process i is the emitter for
process i + 1 mod n, that observe its aliveness.
(Active) detection uses minimal amount of resources
Notification would be very slow: propagation of information is done following a
different (reliable) topology.

– Failure Detection – 4. A word about Failure Detection 36

A stabilizing Algorithm for Failure Detection and Propagation

Stable Stable

D
is

ta
n

ce
to

S
ta

b
le

Time

E
E E

E
At most T (f) if f faults

Stable is a strong property:

all alive processors know about the failure of all dead processors.

T (f) ≤ f (f + 1)δ + f τ +
f (f + 1)

2
8τ log n

– Failure Detection – 4. A word about Failure Detection 37

Performance

����� ����� ����� ��� ��� ����� �� ��� ������ ������� ���� ���� ������� ����������� ����� ���������� ������

��

��

�

�

�

�

�

��

��

���������������

�
��
��
��
��

��
��
��

��

��������� ������ � ���

��� �� ��������

����������� ��� �� ���
������ �
������ �
��������
��������
��������
�����
������

��

��

�

�

�

�

�

��

��

���������������
��������� ������ � ���

��� ��� ��������

��

�

�

�

�

�

���������������
��������� ������ � ���

�����������

����������� ��� �� ���
������ �
������ �
���� ��������

Figure 6: Sensitivity to noise resulting from the failure detector activity for varied workloads.

tion ease, the MPI_THREAD_MULTIPLE support is enabled by
default when the detector thread is enabled, however, future
software releases will drop this requirement. An intricate is-
sue also arises from a negative interaction between the emis-
sion and the reception of heartbeat messages. In order to
check the liveliness of the emitter process (after the � time-
out), the observer has to check if it has received heartbeats.
From an implementation perspective, if the heartbeats are
sent through the“eager” channel, the detector thread, which
is the receive thread in this case, has to be active and poll
for progress the BTL engine. However, if the application
has posted operations on large messages, the poll operation
may start progressing these (long) operations before return-
ing control to the detector thread, leading to an unsafe de-
lay in the emission of heartbeats from that same thread. To
circumvent that di�culty, the detector thread emits heart-
beats using the “RDMA put” channel. Heartbeats are thus
directly deposited by raising a flag in the registered memory
at the receiver, using hardware accelerated put operations
that do not require active polling. The observer can then
simply check that the flag has been raised during the last �
period with a local load operation, and reset the flag with a
local store, which are mostly impervious to noise and do not
delay the ⌘ period. This approach also allows the observer
to miss � periods without endangering the correctness of the
protocol (only increasing the time to detect and notify the
failure, but no triggering a false positive).

5.2 Experimental Conditions
The experiments are carried on the Titan ORNL Super-

computer [28], a Cray XK7 machine with 16-core AMD
Opteron processors and the Cray Gemini interconnect. The
ULFM MPI implementation is based on a pre-release of
Open MPI 2.x (r#6e6bbfd), which supports the optimized
uGNI and shared-memory transports (without XPmem), and
uses the Tuned collective module. The MPI implementation
is compiled with the MPI_THREAD_MULTIPLE support. Every
experiment is repeated 30 times and we present the average.
The benchmarks are deployed with one MPI rank per core,
and all threads of an MPI process are bound to that same
core (application, detector, and driver threads when appli-
cable, i.e. the detector thread does not require exclusive
compute resources).

5.3 Noise and Accuracy
The first set of experiments investigate the noise gener-

ated by the detector and its accuracy for di↵erent workloads
when ⌘ and � vary, in a method similar to [21] that focused
exclusively on measuring the noise generated by di↵erent
failure detection strategies. The ⌘ and � periods are set so
that � = 10 ⇥ ⌘. If the test is successful (that is, no fail-
ure was detected, since none is injected in this experiment),
then ⌘ is reduced, and the experiment is repeated, until a
false positive is reported. We also collect the number of
times an ⌘ deadline was missed, even when the � timeout
is still respected. We first considered a non-communicative,
compute-only MPI application where each rank calls LA-
PACK DGEMM operations on local matrices, without calling
MPI routines for extended periods of time. Without the
detector thread, the non-communicative benchmark reports
false detections for all considered values of ⌘. With the
detector thread, this non-communicative benchmark suc-
ceeds until ⌘ is set to one millisecond. However, starting
from ⌘ < 5 milliseconds, messages indicating a missed ⌘
deadlines are occasionally issued (although the � timeout is
still respected). These observations are consistent with the
scheduling time quantums (sched_min_granularity is set
to 3ms), and indicate that the thread scheduling latency is
an absolute for the minimum ⌘ period. Smaller periods could
be achieved with a real time scheduler, but such capabilities
require administrative privileges, which is undesirable.

Next, we present, in Figure 6, the noise incurred on a vari-
ety of communication, and computation workloads, provided
by the Intel MPI Benchmark (version 4.1), and HPL (ver-
sion 2.2) respectively. Accuracy results are overall similar in
the communicative benchmarks. All tests of the IMB-MPI1
suite can run without false detection for ⌘ � 10ms. Notably,
point-to-point only benchmarks can succeed with ⌘ value as
low as 2.5ms but occasionally report false suspicions. Col-
lective communication benchmarks are more sensitive and
report occasional heartbeat emission deadline misses until
⌘ � 25ms, due to contentions on the access to hardware
network resources.

The latency performance (left graph) and bandwidth per-
formance (center graph) are barely a↵ected by low frequen-
cies of heartbeat emissions. For higher frequencies, the over-
head generated by the noise can reach approximately 10%.
The bandwidth performance is less impacted overall than

����� ����� ����� � ��� ���������� ������� ���� ���� ������� ����������� ����� ���������� ������

���

���

���

���

���

���

���

�� �� �� �� �� �� ��

��
��
��
�
��
�

������ �� �����

������������� ����� ������

� �����
� ������
� ������
� ������

�

��

��

��

��

���

���

���

�� �� �� �� �� �� ��

�
��
��
��
��

��
��
�
��
��
�

������ �� �����

�������� ��������� ��� �����������

� ������
� ������
� ������

�

���

���

���

���

�

���

���

� � � � � � � �
��
��
��
�
��
��

������ �� ��������

��������� ���� �������� ��������

����� �����

Figure 7: Detection and propagation delay, and impact on completion time of fault-tolerant agreement operation.

the latency, especially so for point-to-point bandwidth which
remains unchanged for all but the most extreme values of
⌘. The application performance (Linpack, right graph) sees
no observable performance degradation for ⌘ � 100ms. For
higher frequencies, the performance degradation remains con-
tained under 2%.

5.4 Failure Detection Time
Figure 7 presents the behavior observed when injecting

failures. The first graph (left) presents the time to reach
a stable state when injecting 1 to 8 failures for a varying
number of nodes. After synchronizing, the desired number
of MPI processes (whose ranks are chosen at random) simu-
late a failure. All other processes post an any-source recep-
tion. When the reception raises a process failure exception
(the only possible outcome for this non-matched any-source
reception), the process counts the number of locally known
failed processes, and if it does not contain all injected fail-
ures, repeats the reception. The time at which all failures
have been locally observed is reported at each rank. We
observe that for small scales, the reported delay is consis-
tently close to �. If emitters were sending heartbeats to their
observer at random starting time, we would expect the de-
tection time to be closer to ��⌘/2; however, as all processes
start to sending heartbeats to their observer at the end of
the MPI_Init function, they are almost synchronized, and
for all runs we observe a consistent delay at small scale.
At larger scale, processes leave MPI_Init at a more variable
date, and the average starts to converge toward the theoreti-
cal bound. This observation matches the model, considering
that in this scenario all failures are “simultaneous”, and that
the random allocation of failures has a low probability of
hurting observer/emitter pairs. Consequently, the detection
and propagation of each of these failures progresses con-
currently and do not su↵er from the cumulative e↵ect of
detecting multiple predecessors’ failures on the ring.

The second experiment (center in Figure 7) investigates
the e↵ect of collisions on the reliable broadcast propagation
delay. The benchmark is similar to the previous experiment,
except that before a process simulates a failure, it sends its
observer a special “trigger heartbeat”, which initiates an im-
mediate propagation reporting it dead, without waiting for
the � timeout. The rest of the observation protocol remains
unchanged (i.e. heartbeats are exchanged between live pro-

cesses with an ⌘ period, and the observer of the injection pro-
cess switches to observing the predecessor). We then present
the increase in the average duration of the reliable broadcast
when multiple broadcasts are progressing concurrently. To
simplify the formal proof of the algorithm completion time,
we have considered that concurrent broadcasts are totally
sequentialized. This is an admittedly pessimistic hypoth-
esis, and indeed, performing two concurrent propagations
does not significantly increase the delay, as the two reliable
broadcasts can actually overlap almost completely. How-
ever, starting from 4, and, more prominently, for 8 concur-
rent broadcasts, the average completion time is significantly
increased. Considering the small size of the messages, the
bandwidth requirements are small, and contention on port
access is indeed the major cause of the imperfect overlap be-
tween these concurrent broadcasts, therefore vindicating the
importance of considering a port-limited model during the
design of the failure detector and propagation algorithms.

The last experiment (right in Figure 7) presents the per-
formance of the agreement algorithm after failures have been
injected. The authors of [15] presented a similar perfor-
mance result for the agreement algorithm they have de-
signed. In their results, the agreement performance was
severely impacted when failure were discovered during the
agreement (with the failure free performance of 80µs increas-
ing to approximatively 80ms), an e↵ect the authors claim to
be due to failure detection overhead. In their work, failure
detection was delegated to an ORTE based RAS service,
responsible for detecting and propagating failures. In this
experiment, we strive to recreate as closely as possible this
setup, except that we deploy our failure detector in lieu of
the ORTE RAS service. We consider the same implemen-
tation of the agreement, on 6,000 Titan cores (the same
number of cores they deployed on the generally similar Cray
XC30 Darter system). Some in-band detection capabilities
are active, in particular, failure of shared-memory sibling
ranks are reported by the node local operating system. With
the replacement of the ORTE RAS service by our failure de-
tector algorithm, the time to completion of the agreement
algorithm decreases to below 1.5ms (a 50x improvement).
This is due to the faster propagation of failure knowledge
among the agreement participants: instead of waiting for
(long) in-band timeouts or ORTE RAS notification, a pro-
cess whose parent or children have failed can observe much

– Failure Detection – 4. A word about Failure Detection 38

Outline

1. Introduction

2. Early Returning Agreement

3. Performance Evaluation

4. A word about Failure Detection

5. Conclusion

– Failure Detection – 5. Conclusion 39

Conclusion

Consensus

ERA is a Logarithmic Agreement, in number of messages and in
computation

ERA allows processes to return early from the routine itself, serving
potential late requests in the background

Its implementation in ULFM / Open MPI shows performance comparable to
an optimized non-fault-tolerant AllReduce

Improvement of agreement translates into improvement of other routines
(shrink).

Failure Detection

Stabilizing Failure Detection and Propagation mechanism based on push
heartbeats

Provides a perfect failure detector (P)

Implements a low-latency / low-probability of false positive failure detector
is a challenge

– Failure Detection – 5. Conclusion 40

	Introduction
	Motivation and Context
	Formal Framework
	State of the Art

	Early Returning Agreement
	Principle of the Algorithm
	Trees Topologies
	Algorithm
	Multiple Agreements and Implementation

	Performance Evaluation
	Agreement Performance
	S3D and FENIX
	MiniFE and LFLR Framework

	A word about Failure Detection
	Conclusion

