
Rethinking HPC algorithms for Exascale:
the case for Adjoint Computations

Guillaume Aupy



Scheduling 102,
Scheduling under constraints

Guillaume Aupy

1



2

Scheduling

I p processors (or nodes or cores or computing units).

I An application represented by a DAG G = (V,E):
I Vertices are tasks (or functions to be computed)
I Edges represent data dependency (need to be respected)

T1

T2

T3

T4

T5

T6



3

Motivational example

T1

T2

T3

T4

T5

T6

Assume tasks have unit size and there are two processors.

time00 1 2 3 4

Theory

p1 T1 T3 T5 T6

p2 T2 T4

time0 1 2 3 4 5

Practice

p1 T1 T3 T5 T6

p2 T2 T4

I In theory, optimal schedule ,
I In practice, not what we expected /.

What happened?



3

Motivational example

T1

T2

T3

T4

T5

T6

Assume tasks have unit size and there are two processors.

time00 1 2 3 4

Theory

p1 T1 T3 T5 T6

p2 T2 T4

time0 1 2 3 4 5

Practice

p1 T1 T3 T5 T6

p2 T2 T4

I In theory, optimal schedule ,

I In practice, not what we expected /.

What happened?



3

Motivational example

T1

T2

T3

T4

T5

T6

Assume tasks have unit size and there are two processors.

time00 1 2 3 4

Theory

p1 T1 T3 T5 T6

p2 T2 T4

time0 1 2 3 4 5

Practice

p1 T1 T3 T5 T6

p2 T2 T4

I In theory, optimal schedule ,
I In practice, not what we expected /.

What happened?



3

Motivational example

T1

T2

T3

T4

T5

T6

Assume tasks have unit size and there are two processors.

time00 1 2 3 4

Theory

p1 T1 T3 T5 T6

p2 T2 T4

time0 1 2 3 4 5

Practice

p1 T1 T3 T5 T6

p2 T2 T4

I In theory, optimal schedule ,
I In practice, not what we expected /.

What happened?



4

Data is critical

p1

p2

Memory Disks

Overview of a computer.

In general,

I Memory is small but accesses are fast;

I Disks are large but accesses are slow.



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1

T1 T3 T5

fetch d1 from disk

T6

p2

T2 T4

Memory

d1d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1

T1 T3 T5 T1 T6

p2

T2 T4

Memory

d1d3d5

d2d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1

T3 T5

fetch d1 from disk

T6

p2

T2 T4

Memory

d1

d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1

T1 T3 T5 T1 T6

p2

T2 T4

Memory

d1d3d5

d2d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3

T5

fetch d1 from disk

T6

p2 T2

T4

Memory

d1

d3

d5

d2

d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1

T1 T3 T5 T1 T6

p2

T2 T4

Memory

d1d3d5

d2d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1d3

d5

d2

d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1

T1 T3 T5 T1 T6

p2

T2 T4

Memory

d1d3d5

d2d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1

d3d5

d2

d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1

T1 T3 T5 T1 T6

p2

T2 T4

Memory

d1d3d5

d2d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1

T1 T3 T5 T1 T6

p2

T2 T4

Memory

d1d3d5

d2d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1

T1 T3 T5 T1 T6

p2

T2 T4

Memory

d1d3d5

d2d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1

T1 T3 T5 T1 T6

p2

T2 T4

Memory

d1d3d5

d2d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1 T1

T3 T5 T1 T6

p2

T2 T4

Memory

d1

d3d5

d2d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1 T1 T3

T5 T1 T6

p2 T2

T4

Memory

d1

d3

d5

d2

d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1 T1 T3 T5

T1 T6

p2 T2 T4

Memory

d1d3

d5

d2

d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1 T1 T3 T5 T1

T6

p2 T2 T4

Memory

d1

d3d5

d2

d4

Disks

d1



5

Back to our schedule

T1

T2

T3

T4

T5

T6

0 1 2 3 4 5

p1 T1 T3 T5

fetch d1 from disk

T6

p2 T2 T4

Memory

d1d3d5

d2d4

Disks

d1

Can we do better (or prove that we cannot)?

0 1 2 3 4 5

p1 T1 T3 T5 T1 T6

p2 T2 T4

Memory

d1d3d5

d2d4

Disks

d1



6

Some numbers

(Brief) history of supercomputers at Argonne National Lab:

Intrepid Mira

Year 2008-2013 2013-
Peak Perf 0.557 PFlops 10 PFlops

Peak I/O Throughput 88 GB/s 240 GB/s

I/O Tp per Flops 157 GB/PFlops/s 16.8 GB/PFlops/s

Analysis of the Intrepid system @Argonne: I/O throughput
decrease (percentage per application, over 400 applications).



6

Some numbers

(Brief) history of supercomputers at Argonne National Lab:

Intrepid Mira

Year 2008-2013 2013-
Peak Perf 0.557 PFlops 10 PFlops

Peak I/O Throughput 88 GB/s 240 GB/s
I/O Tp per Flops 157 GB/PFlops/s 16.8 GB/PFlops/s

Analysis of the Intrepid system @Argonne: I/O throughput
decrease (percentage per application, over 400 applications).



6

Some numbers

(Brief) history of supercomputers at Argonne National Lab:

Intrepid Mira

Year 2008-2013 2013-
Peak Perf 0.557 PFlops 10 PFlops

Peak I/O Throughput 88 GB/s 240 GB/s
I/O Tp per Flops 157 GB/PFlops/s 16.8 GB/PFlops/s

Analysis of the Intrepid system @Argonne: I/O throughput
decrease (percentage per application, over 400 applications).



7

What next

Some directions to solve this problem:

I Better I/O Management?

I Rethinking I/O intensive applications:
from computation-oriented thinking to I/O-oriented
thinking.



Optimal multistage algorithms for
adjoint computation

Guillaume Aupy,

work with Julien Herrmann, Paul Hovland & Yves Robert

8



9

Ice-sheet model (I)

“In climate modelling, Ice-sheet models use numerical methods
to simulate the evolution, dynamics and thermodynamics of ice
sheets.” (wikipedia)

Credit: Daniel Goldberg

Simpler Version:

proc Model Algorithm(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

end
/* F (u0) = fn ◦ fn−1 ◦ . . . ◦ f0(u0) */

Compute ∇F (u0)y;

end



9

Ice-sheet model (I)

“In climate modelling, Ice-sheet models use numerical methods
to simulate the evolution, dynamics and thermodynamics of ice
sheets.” (wikipedia)

Credit: Daniel Goldberg

Simpler Version:

proc Model Algorithm(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

end
/* F (u0) = fn ◦ fn−1 ◦ . . . ◦ f0(u0) */

Compute ∇F (u0)y;

end



10

Ice-sheet model (II)

F (u0) = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0(u0)

∇F (u0)y = Jf0(u0)T ·∇(fn ◦ f1)(u1) · y

= Jf0(u0)T · Jf1(u1)T · . . . · Jfn−1(un−1)T · Jfn(un)T · y

JfT = Transpose Jacobian matrix of f ;
ui+1 = fi(ui) = fi (fi−1 ◦ . . . ◦ f0(u0)) .

But then, isn’t there a faster algorithm?



10

Ice-sheet model (II)

F (u0) = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0(u0)

∇F (u0)y = Jf0(u0)T ·∇(fn ◦ f1)(u1) · y

= Jf0(u0)T · Jf1(u1)T · . . . · Jfn−1(un−1)T · Jfn(un)T · y

JfT = Transpose Jacobian matrix of f ;
ui+1 = fi(ui) = fi (fi−1 ◦ . . . ◦ f0(u0)) .

But then, isn’t there a faster algorithm?



11

A better solution?

∇F (u0)y = Jf0(u0)T ·Jf1(u1)T · . . . ·Jfn−1(un−1)T ·Jfn(un)T ·y

proc Algo A(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

end
Compute ∇F (u0)y;

end

proc Algo B(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

vi+1 = vi · Jfi+1(ui+1)T ;

end

end

What is the problem with Algo B?

∇F (u0)y =
((

. . .
(
Jf0

T · Jf1T
)
· . . . · Jfn−1

T
)
· JfnT

)
· y n MatMat ops

∇F (u0)y = Jf0
T ·

(
Jf1

T · . . . ·
(
Jfn−1

T ·
(
Jfn

T · y
)
. . .

))
n MatVec ops



11

A better solution?

∇F (u0)y = Jf0(u0)T ·Jf1(u1)T · . . . ·Jfn−1(un−1)T ·Jfn(un)T ·y

proc Algo A(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

end
Compute ∇F (u0)y;

end

proc Algo B(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

vi+1 = vi · Jfi+1(ui+1)T ;

end

end

What is the problem with Algo B?

∇F (u0)y =
((

. . .
(
Jf0

T · Jf1T
)
· . . . · Jfn−1

T
)
· JfnT

)
· y n MatMat ops

∇F (u0)y = Jf0
T ·

(
Jf1

T · . . . ·
(
Jfn−1

T ·
(
Jfn

T · y
)
. . .

))
n MatVec ops



11

A better solution?

∇F (u0)y = Jf0(u0)T ·Jf1(u1)T · . . . ·Jfn−1(un−1)T ·Jfn(un)T ·y

proc Algo A(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

end
Compute ∇F (u0)y;

end

proc Algo B(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

vi+1 = vi · Jfi+1(ui+1)T ;

end

end

What is the problem with Algo B?

∇F (u0)y =
((

. . .
(
Jf0

T · Jf1T
)
· . . . · Jfn−1

T
)
· JfnT

)
· y n MatMat ops

∇F (u0)y = Jf0
T ·

(
Jf1

T · . . . ·
(
Jfn−1

T ·
(
Jfn

T · y
)
. . .

))
n MatVec ops



12

Adjoint computation

Fi(xi) = xi+1 i < l

F̄i(xi, x̄i+1) = x̄i i ≤ l

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

x0 x1 x2 xl−2 xl−1 xl

x̄l+1x̄lx̄l−1x̄3x̄2x̄1x̄0

x0 x1 x2 xl−1 xl



12

Adjoint computation

Fi(xi) = xi+1 i < l

F̄i(xi, x̄i+1) = x̄i i ≤ l

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

x0 x1 x2 xl−2 xl−1 xl

x̄l+1x̄lx̄l−1x̄3x̄2x̄1x̄0

x0 x1 x2 xl−1 xl



12

Adjoint computation

Fi(xi) = xi+1 i < l

F̄i(xi, x̄i+1) = x̄i i ≤ l

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

x0 x1 x2 xl−2 xl−1 xl

x̄l+1x̄lx̄l−1x̄3x̄2x̄1x̄0

x0 x1 x2 xl−1 xl



12

Adjoint computation

Fi(xi) = xi+1 i < l

F̄i(xi, x̄i+1) = x̄i i ≤ l

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

x0 x1 x2 xl−2 xl−1 xl

x̄l+1x̄lx̄l−1x̄3x̄2x̄1x̄0

x0 x1 x2 xl−1 xl



12

Adjoint computation

Fi(xi) = xi+1 i < l

F̄i(xi, x̄i+1) = x̄i i ≤ l

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

x0 x1 x2 xl−2 xl−1 xl

x̄l+1x̄lx̄l−1x̄3x̄2x̄1x̄0

x0 x1 x2 xl−1 xl



13

Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4̄F4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4̄F4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2F2 F3 F4

F̄0 F̄1 F̄2 F̄3̄F3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4̄F4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3̄F3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3̄F3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0F0 F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0F0 F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4̄F4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0F0 F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4 F̄5̄F5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4̄F4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4̄F4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4̄F4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2F2 F3 F4

F̄0 F̄1 F̄2 F̄3̄F3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3̄F3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2̄F2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4

F̄0 F̄1 F̄2̄F2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4

F̄0 F̄1 F̄2̄F2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0F0 F1 F2 F3 F4

F̄0 F̄1 F̄2̄F2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0F0 F1 F2 F3 F4

F̄0 F̄1̄F1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4

F̄0 F̄1̄F1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



13

Model of Computation

F0 F1 F2 F3 F4

F̄0̄F0 F̄1 F̄2 F̄3 F̄4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.



14

Problem formulation

We want to minimize the makespan of:

Initial state:
AC graph: size l

Steps: uf , ub

Memory: cm, wm = rm = 0, Mini = ∅
Disks: cd = +∞, wd, rd, Dini = ∅

Buffers: B>, B⊥ B>ini = {x0}, B⊥ini = {x̄l+1}

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l



15

Previous work

GW00: Revolve(l, cm), optimal algorithm with cm memory slots
and no disk slots.

SW09: SWA?, an algorithm based on Revolve that takes disk
storage into acount.

(i) SWA(l, cm, cd, wd, rd) ≈ Revolve(l, cd + cm)1

(ii) SWA?(l, cm, wd, rd) = mincd=0...l−cm SWA(l, cm, cd, wd, rd)

This work: optimal algorithm with disk storage.

1out of the cd + cm slots used by Revolve, the cd slots the least used
are considered disk slots.



16

A grasp of the proof

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

Any algorithm works in two phases:

I The forward phase (before executing F̄l);

I The backward phase (that starts when executing F̄l);



17

The forward phase

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

In this phase:

I We execute all F-operations;

I We write some data to disk and/or to memory.

Forward phase

F0 F1 F2 Fl−1



17

The forward phase

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

In this phase:

I We execute all F-operations;

I We write some data to disk and/or to memory.

Forward phase

F0 F1 F2 Fl−1



18

The backward phase

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

In this phase:

I We DO NOT write any data to disk (could have been done
in the forward phase);

I All other operations are allowed.



19

No going back

Lemma

If x̄i is computed, then there are no Fj for i ≤ j (or operations
involving B).

· · · F∗ · · · Fi−1 · · · F∗ · · ·

· · · F̄i · · · F̄∗ · · ·
x̄i

A B



20

Checkpoint persistence (I)

Lemma

If xi is written (to disk or memory), until we have executed F̄i

there are no Fj for j < i (or operations involving A).

· · · F∗ · · · Fi−1 · · · F∗ · · ·

· · · F̄i · · · F̄∗ · · ·

xi

xi

A B



21

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase
backward phase:

Forward phase

F0 F1 F2 Fl−1



21

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase
backward phase:

Forward phase

F0 F1 F2 Fl−1



21

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase
backward phase:

Forward phase

F0 F1 F2 Fl−1



21

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase
backward phase:

Forward phase

F0 F1 F2 Fl−1



21

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase
backward phase:

Forward phase

F0 F1 F2 Fl−1



21

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase
backward phase:

Forward phase

F0 F1 F2 Fl−1



22

Characterizing the backward phase

Forward phase

F0 F1 F2 Fl−1

I m backward steps to execute;

I No disk writes or reads;

I c memory checkpoints available

=⇒ rm + Revolve(m, c)

I m backward steps to execute;

I No disk writes;

I c memory checkpoints available

=⇒ rd + 1D-Revolve(m, c)



22

Characterizing the backward phase

Forward phase

F0 F1 F2 Fl−1

I m backward steps to execute;

I No disk writes or reads;

I c memory checkpoints available

=⇒ rm + Revolve(m, c)

I m backward steps to execute;

I No disk writes;

I c memory checkpoints available

=⇒ rd + 1D-Revolve(m, c)



23

Characterizing the forward phase

Theorem

During the forward phase, first we write to disks, then we write
to memory.

Forward phase

F0 F1 F2 Fl−1

1D-Revolve(m, c)Rev(m′, c + 1)

Forward phase

F0 F1 F2 Fl−1

Revolve(m, c + 1)1D-Rev(m′, c + 1)

I Exe(Revolve(m, c + 1)) ≤ Exe(1D-Revolve(m, c))

I Exe(1D-Revolve(m′, c + 1)) ≤ Exe(Revolve(m′, c + 1))



23

Characterizing the forward phase

Theorem

During the forward phase, first we write to disks, then we write
to memory.

Forward phase

F0 F1 F2 Fl−1

1D-Revolve(m, c)Rev(m′, c + 1)

Forward phase

F0 F1 F2 Fl−1

Revolve(m, c + 1)1D-Rev(m′, c + 1)

I Exe(Revolve(m, c + 1)) ≤ Exe(1D-Revolve(m, c))

I Exe(1D-Revolve(m′, c + 1)) ≤ Exe(Revolve(m′, c + 1))



23

Characterizing the forward phase

Theorem

During the forward phase, first we write to disks, then we write
to memory.

Forward phase

F0 F1 F2 Fl−1

1D-Revolve(m, c)

Rev(m′, c + 1)

Forward phase

F0 F1 F2 Fl−1

Revolve(m, c + 1)

1D-Rev(m′, c + 1)

I Exe(Revolve(m, c + 1)) ≤ Exe(1D-Revolve(m, c))

I Exe(1D-Revolve(m′, c + 1)) ≤ Exe(Revolve(m′, c + 1))



23

Characterizing the forward phase

Theorem

During the forward phase, first we write to disks, then we write
to memory.

Forward phase

F0 F1 F2 Fl−1

1D-Revolve(m, c)Rev(m′, c + 1)

Forward phase

F0 F1 F2 Fl−1

Revolve(m, c + 1)1D-Rev(m′, c + 1)

I Exe(Revolve(m, c + 1)) ≤ Exe(1D-Revolve(m, c))

I Exe(1D-Revolve(m′, c + 1)) ≤ Exe(Revolve(m′, c + 1))



23

Characterizing the forward phase

Theorem

During the forward phase, first we write to disks, then we write
to memory.

Forward phase

F0 F1 F2 Fl−1

1D-Revolve(m, c)Rev(m′, c + 1)

Forward phase

F0 F1 F2 Fl−1

Revolve(m, c + 1)1D-Rev(m′, c + 1)

I Exe(Revolve(m, c + 1)) ≤ Exe(1D-Revolve(m, c))

I Exe(1D-Revolve(m′, c + 1)) ≤ Exe(Revolve(m′, c + 1))



24

Computing the optimal schedule

Forward phase

F0 Fl−1

Revolve(m, cm)

m1 m2 m3 m4 l −
∑

mi



24

Computing the optimal schedule

Forward phase

F0 Fl−1

Revolve(m, cm)

m1 m2 m3 m4 l −
∑

mi



24

Computing the optimal schedule

Forward phase

F0 Fl−1

Revolve(m, cm)

m1 m2 m3 m4 l −
∑

mi



24

Computing the optimal schedule

Forward phase

F0 Fl−1

Revolve(m, cm)

m1 m2 m3 m4 l −
∑

mi



24

Computing the optimal schedule

Forward phase

F0 Fl−1

m1 m2 m3 m4 l −
∑

mi

Theorem

We can compute the optimal number of disk checkpoints needed
and the space between them in O(l2) with a dynamic
programming algorithm to minimize execution time.



24

Computing the optimal schedule

Forward phase

F0 Fl−1

m1 m2 m3 m4 l −
∑

mi

Theorem

We can compute the optimal number of disk checkpoints needed
and the space between them in O(l2) with a dynamic
programming algorithm to minimize execution time.



25

In practice?

In realistic scenarios we expect to divide the execution time by
2 or 3.

cm = 2 cm = 5 cm = 10 cm = 25

0 5000 10000 15000 20000
l = size of the AC graph

1.00

1.05

1.10

1.15

1.20

1.25

S
W
A
⋆
/O
p
t ∞

(a) wd = rd = 1

0 5000 10000 15000 20000
l = size of the AC graph

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
W
A
⋆
/O
p
t ∞

(b) wd = rd = 5

Ratio SWA?(l, cm, wd, rd)/Opt∞(l, cm, wd, rd) as a function of l.



26

Going further

Forward phase

F0 Fl−1

m1 m2 m3 m4 l −
∑

mi

We know how to compute the mi’s. But the cost of computing
them is non-negligible (l2). Can we do better?

Theorem (Weak Periodicity)

Except for a bounded number of them (the bound depends on
X = (cm, wd, rd)), all the mi’s are equal (to mX).

Corollary

Writing disk checkpoint every mX forward steps is
asymptotically optimal.



26

Going further

Forward phase

F0 Fl−1

m1 m2 m3 m4 l −
∑

mi

We know how to compute the mi’s. But the cost of computing
them is non-negligible (l2). Can we do better?

Theorem (Weak Periodicity)

Except for a bounded number of them (the bound depends on
X = (cm, wd, rd)), all the mi’s are equal (to mX).

Corollary

Writing disk checkpoint every mX forward steps is
asymptotically optimal.



26

Going further

Forward phase

F0 Fl−1

m1 m2 m3 m4 l −
∑

mi

We know how to compute the mi’s. But the cost of computing
them is non-negligible (l2). Can we do better?

Theorem (Weak Periodicity)

Except for a bounded number of them (the bound depends on
X = (cm, wd, rd)), all the mi’s are equal (to mX).

Corollary

Writing disk checkpoint every mX forward steps is
asymptotically optimal.



27

Additional data

100 101 102 103 104

l = size of the AC graph

1.00

1.01

1.02

1.03

1.04

1.05
P
D
S
/O

p
t ∞

wd =rd =1

wd =rd =2

wd =rd =5

wd =rd =10

Makespan of periodic algo over optimal: function of l, cm = 10.



28

Conclusions on adjoint computations

Some numbers:

I The adjoint computation in MITgcm runs in O(days), the
gain induced by our optimal algorithm would be non
negligible!

I Nek5000 runs on 500K cores, two processes/core on Mira.
We need to take reliability into account (future work).

References:

GW00 Griewank and Walther, Algorithm 799: Revolve: an implementation of
checkpointing for the reverse or adjoint mode of computational
differentiation, TOMS, 2000

SW09 Stumm and Walther, Multistage approaches for optimal offline
checkpointing, SISC, 2009



Perspectives on I/O management

Scalable I/O management is a critical problem for Exascale.

Some directions that need to be solved:

I Models are missing!
Understanding applications is necessary to design better

solutions.

I The energy cost of I/O management is barely studied!
Energy is also one of the limiting factor for the next scale.

I Applications need to be redesigned!
Some data may not be as important as other, can we find new

strategies to deal with them?


	Introduction
	Problem
	Rel. work

	Results
	Simulations
	Going further

