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Scheduling

I p processors (or nodes or cores or computing units).

I An application represented by a DAG G = (V,E):
I Vertices are tasks (or functions to be computed)
I Edges represent data dependency (need to be respected)
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Motivational example
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T5

T6

Assume tasks have unit size and there are two processors.

time00 1 2 3 4

Theory

p1 T1 T3 T5 T6

p2 T2 T4

time0 1 2 3 4 5

Practice

p1 T1 T3 T5 T6

p2 T2 T4

I In theory, optimal schedule ,
I In practice, not what we expected /.

What happened?
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Data is critical

p1

p2

Memory Disks

Overview of a computer.

In general,

I Memory is small but accesses are fast;

I Disks are large but accesses are slow.
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Back to our schedule
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Can we do better (or prove that we cannot)?
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Some numbers

(Brief) history of supercomputers at Argonne National Lab:

Intrepid Mira

Year 2008-2013 2013-
Peak Perf 0.557 PFlops 10 PFlops

Peak I/O Throughput 88 GB/s 240 GB/s

I/O Tp per Flops 157 GB/PFlops/s 16.8 GB/PFlops/s

Analysis of the Intrepid system @Argonne: I/O throughput
decrease (percentage per application, over 400 applications).
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What next

Some directions to solve this problem:

I Better I/O Management?

I Rethinking I/O intensive applications:
from computation-oriented thinking to I/O-oriented
thinking.



Optimal multistage algorithms for
adjoint computation

Guillaume Aupy,

work with Julien Herrmann, Paul Hovland & Yves Robert
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Ice-sheet model (I)

“In climate modelling, Ice-sheet models use numerical methods
to simulate the evolution, dynamics and thermodynamics of ice
sheets.” (wikipedia)

Credit: Daniel Goldberg

Simpler Version:

proc Model Algorithm(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

end
/* F (u0) = fn ◦ fn−1 ◦ . . . ◦ f0(u0) */

Compute ∇F (u0)y;

end
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Ice-sheet model (II)

F (u0) = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0(u0)

∇F (u0)y = Jf0(u0)T ·∇(fn ◦ f1)(u1) · y

= Jf0(u0)T · Jf1(u1)T · . . . · Jfn−1(un−1)T · Jfn(un)T · y

JfT = Transpose Jacobian matrix of f ;
ui+1 = fi(ui) = fi (fi−1 ◦ . . . ◦ f0(u0)) .

But then, isn’t there a faster algorithm?
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A better solution?

∇F (u0)y = Jf0(u0)T ·Jf1(u1)T · . . . ·Jfn−1(un−1)T ·Jfn(un)T ·y

proc Algo A(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

end
Compute ∇F (u0)y;

end

proc Algo B(u0,y)
begin

Do stuff;
for i = 0 to n do

ui+1 = fi(ui);
Do stuff;

vi+1 = vi · Jfi+1(ui+1)T ;

end

end

What is the problem with Algo B?

∇F (u0)y =
((

. . .
(
Jf0

T · Jf1T
)
· . . . · Jfn−1

T
)
· JfnT

)
· y n MatMat ops

∇F (u0)y = Jf0
T ·

(
Jf1

T · . . . ·
(
Jfn−1

T ·
(
Jfn

T · y
)
. . .

))
n MatVec ops
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Adjoint computation

Fi(xi) = xi+1 i < l

F̄i(xi, x̄i+1) = x̄i i ≤ l

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

x0 x1 x2 xl−2 xl−1 xl

x̄l+1x̄lx̄l−1x̄3x̄2x̄1x̄0

x0 x1 x2 xl−1 xl
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Model of Computation

F0 F1F1 F2 F3 F4

F̄0 F̄1 F̄2 F̄3 F̄4̄F4 F̄5

I Two buffers: store output of computations (xi or x̄i). Initial
state: contains x0 and x̄l+1.

I cm < +∞ in-core slots (memory).

I Cost to write: wm = 0,
I Cost to read: rm = 0.

I cd = +∞ out-of-core slots (disk).

I Cost to write: wd,
I Cost to read: rd.
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Problem formulation

We want to minimize the makespan of:

Initial state:
AC graph: size l

Steps: uf , ub

Memory: cm, wm = rm = 0, Mini = ∅
Disks: cd = +∞, wd, rd, Dini = ∅

Buffers: B>, B⊥ B>ini = {x0}, B⊥ini = {x̄l+1}

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l
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Previous work

GW00: Revolve(l, cm), optimal algorithm with cm memory slots
and no disk slots.

SW09: SWA?, an algorithm based on Revolve that takes disk
storage into acount.

(i) SWA(l, cm, cd, wd, rd) ≈ Revolve(l, cd + cm)1

(ii) SWA?(l, cm, wd, rd) = mincd=0...l−cm SWA(l, cm, cd, wd, rd)

This work: optimal algorithm with disk storage.

1out of the cd + cm slots used by Revolve, the cd slots the least used
are considered disk slots.
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A grasp of the proof

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

Any algorithm works in two phases:

I The forward phase (before executing F̄l);

I The backward phase (that starts when executing F̄l);
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The forward phase

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

In this phase:

I We execute all F-operations;

I We write some data to disk and/or to memory.

Forward phase

F0 F1 F2 Fl−1
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The backward phase

F0 F1 · · · Fl−2 Fl−1

F̄0 F̄1 F̄2 · · · F̄l−1 F̄l

In this phase:

I We DO NOT write any data to disk (could have been done
in the forward phase);

I All other operations are allowed.
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No going back

Lemma

If x̄i is computed, then there are no Fj for i ≤ j (or operations
involving B).

· · · F∗ · · · Fi−1 · · · F∗ · · ·

· · · F̄i · · · F̄∗ · · ·
x̄i

A B
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Checkpoint persistence (I)

Lemma

If xi is written (to disk or memory), until we have executed F̄i

there are no Fj for j < i (or operations involving A).

· · · F∗ · · · Fi−1 · · · F∗ · · ·

· · · F̄i · · · F̄∗ · · ·

xi

xi

A B
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Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase
backward phase:

Forward phase

F0 F1 F2 Fl−1
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Characterizing the backward phase

Forward phase

F0 F1 F2 Fl−1

I m backward steps to execute;

I No disk writes or reads;

I c memory checkpoints available

=⇒ rm + Revolve(m, c)

I m backward steps to execute;

I No disk writes;

I c memory checkpoints available

=⇒ rd + 1D-Revolve(m, c)
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Characterizing the forward phase

Theorem

During the forward phase, first we write to disks, then we write
to memory.

Forward phase

F0 F1 F2 Fl−1

1D-Revolve(m, c)Rev(m′, c + 1)

Forward phase

F0 F1 F2 Fl−1

Revolve(m, c + 1)1D-Rev(m′, c + 1)

I Exe(Revolve(m, c + 1)) ≤ Exe(1D-Revolve(m, c))

I Exe(1D-Revolve(m′, c + 1)) ≤ Exe(Revolve(m′, c + 1))
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Computing the optimal schedule
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Computing the optimal schedule

Forward phase

F0 Fl−1

m1 m2 m3 m4 l −
∑

mi

Theorem

We can compute the optimal number of disk checkpoints needed
and the space between them in O(l2) with a dynamic
programming algorithm to minimize execution time.
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In practice?

In realistic scenarios we expect to divide the execution time by
2 or 3.

cm = 2 cm = 5 cm = 10 cm = 25

0 5000 10000 15000 20000
l = size of the AC graph

1.00

1.05

1.10

1.15

1.20
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⋆
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p
t ∞

(a) wd = rd = 1

0 5000 10000 15000 20000
l = size of the AC graph
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⋆
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(b) wd = rd = 5

Ratio SWA?(l, cm, wd, rd)/Opt∞(l, cm, wd, rd) as a function of l.
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Going further

Forward phase

F0 Fl−1

m1 m2 m3 m4 l −
∑

mi

We know how to compute the mi’s. But the cost of computing
them is non-negligible (l2). Can we do better?

Theorem (Weak Periodicity)

Except for a bounded number of them (the bound depends on
X = (cm, wd, rd)), all the mi’s are equal (to mX).

Corollary

Writing disk checkpoint every mX forward steps is
asymptotically optimal.
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Additional data

100 101 102 103 104

l = size of the AC graph
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wd =rd =5

wd =rd =10

Makespan of periodic algo over optimal: function of l, cm = 10.
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Conclusions on adjoint computations

Some numbers:

I The adjoint computation in MITgcm runs in O(days), the
gain induced by our optimal algorithm would be non
negligible!

I Nek5000 runs on 500K cores, two processes/core on Mira.
We need to take reliability into account (future work).

References:

GW00 Griewank and Walther, Algorithm 799: Revolve: an implementation of
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Perspectives on I/O management

Scalable I/O management is a critical problem for Exascale.

Some directions that need to be solved:

I Models are missing!
Understanding applications is necessary to design better

solutions.

I The energy cost of I/O management is barely studied!
Energy is also one of the limiting factor for the next scale.

I Applications need to be redesigned!
Some data may not be as important as other, can we find new

strategies to deal with them?
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