Rethinking HPC algorithms for Exascale: the case for Adjoint Computations

Guillaume Aupy

Scheduling 102, Scheduling under constraints

Guillaume Aupy

Scheduling

- \triangleright p processors (or nodes or cores or computing units).
- ▶ An application represented by a DAG $\mathcal{G} = (V, E)$:
 - ► Vertices are tasks (or functions to be computed)
 - ► Edges represent data dependency (need to be respected)

2

Assume tasks have unit size and there are two processors.

Assume tasks have unit size and there are two processors.

► In theory, optimal schedule ©

Assume tasks have unit size and there are two processors.

- ► In theory, optimal schedule ©
- ▶ In practice, not what we expected ②.

Assume tasks have unit size and there are two processors.

- ► In theory, optimal schedule ©
- ▶ In practice, not what we expected ②.

What happened?

Data is critical

Overview of a computer.

In general,

- ► Memory is small but accesses are fast;
- ▶ Disks are large but accesses are slow.

BACK TO OUR SCHEDULE

Can we do better (or prove that we cannot)?

5

Some numbers

(Brief) history of supercomputers at Argonne National Lab:

	Intrepid	Mira
Year	2008-2013	2013-
Peak Perf	0.557 PFlops	10 PFlops
Peak I/O Throughput	$88 \; \mathrm{GB/s}$	$240 \; \mathrm{GB/s}$

. . .

Some numbers

(Brief) history of supercomputers at Argonne National Lab:

	Intrepid	Mira
Year	2008-2013	2013-
Peak Perf	0.557 PFlops	10 PFlops
Peak I/O Throughput	88 GB/s	240 GB/s
I/O Tp per Flops	157 GB/PFlops/s	16.8 GB/PFlops/s

Some numbers

(Brief) history of supercomputers at Argonne National Lab:

	Intrepid	Mira
Year	2008-2013	2013-
Peak Perf	0.557 PFlops	10 PFlops
Peak I/O Throughput	$88~\mathrm{GB/s}$	$240 \; \mathrm{GB/s}$
I/O Tp per Flops	157 GB/PFlops/s	16.8 GB/PFlops/s

Analysis of the Intrepid system @Argonne: I/O throughput decrease (percentage per application, over 400 applications).

WHAT NEXT

Some directions to solve this problem:

► Better I/O Management?

► Rethinking I/O intensive applications: from computation-oriented thinking to I/O-oriented thinking.

7

OPTIMAL MULTISTAGE ALGORITHMS FOR ADJOINT COMPUTATION

Guillaume Aupy, work with Julien Herrmann, Paul Hovland & Yves Robert

ICE-SHEET MODEL (I)

"In climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets." (wikipedia)

Credit: Daniel Goldberg

ICE-SHEET MODEL (I)

"In climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets." (wikipedia)

```
Simpler Version:
Model Algorithm (single timestep)
                                                        proc Model Algorithm(u_0, \mathbf{y})
1. Evaluate driving stress \tau_d = \rho g h \nabla s
2. Solve for velocities
                                                        begin
   DO i = 1, max iter
    i. Evaluate nonlinear viscosity v. from
                                                               Do stuff:
       iterate u
                                                               for i = 0 to n do
    ii. Construct stress matrix A{v}
    iii. Solve linear system A u_{i+1} = \tau_{cl}
                                                                     u_{i+1} = f_i(u_i);
    iv. (Exit if converged)
                                                                     Do stuff:
   ENDDO
3. Evolve thickness (continuity eqn)
                                                               end
         Automatic differentiation
                                                               /* F(u_0) = f_n \circ f_{n-1} \circ \ldots \circ f_0(u_0) */
         (AD) tools generate code
                                                               Compute \nabla F(u_0) \mathbf{y};
         for adjoint of operations
```

end

Credit: Daniel Goldberg

ICE-SHEET MODEL (II)

$$F(u_0) = f_n \circ f_{n-1} \circ \ldots \circ f_1 \circ f_0(u_0)$$

$$\nabla F(u_0) \mathbf{y} = J f_0(u_0)^T \cdot \nabla (f_n \circ f_1)(u_1) \cdot \mathbf{y}$$

$$= J f_0(u_0)^T \cdot J f_1(u_1)^T \cdot \dots \cdot J f_{n-1}(u_{n-1})^T \cdot J f_n(u_n)^T \cdot \mathbf{y}$$

$$Jf^T$$
 = Transpose Jacobian matrix of f ;
 $u_{i+1} = f_i(u_i) = f_i(f_{i-1} \circ \dots \circ f_0(u_0))$.

ICE-SHEET MODEL (II)

$$F(u_0) = f_n \circ f_{n-1} \circ \ldots \circ f_1 \circ f_0(u_0)$$

$$\nabla F(u_0) \boldsymbol{y} = J f_0(u_0)^T \cdot \nabla (f_n \circ f_1)(u_1) \cdot \boldsymbol{y}$$
$$= \boxed{J f_0(u_0)^T \cdot J f_1(u_1)^T \cdot \dots \cdot J f_{n-1}(u_{n-1})^T \cdot J f_n(u_n)^T \cdot \boldsymbol{y}}$$

$$Jf^T$$
 = Transpose Jacobian matrix of f ;
 $u_{i+1} = f_i(u_i) = f_i(f_{i-1} \circ \ldots \circ f_0(u_0))$.

But then, isn't there a faster algorithm?

A BETTER SOLUTION?

$$\nabla F(u_0) \boldsymbol{y} = J f_0(u_0)^T \cdot J f_1(u_1)^T \cdot \ldots \cdot J f_{n-1}(u_{n-1})^T \cdot J f_n(u_n)^T \cdot \boldsymbol{y}$$

```
proc Algo B(u_0, \boldsymbol{y})
proc Algo A(u_0, \boldsymbol{y})
                                                                  begin
begin
                                                                         Do stuff:
      Do stuff:
                                                                         for i = 0 to n do
      for i = 0 to n do
                                                                            u_{i+1} = f_i(u_i);
Do stuff;
v_{i+1} = v_i \cdot J f_{i+1}(u_{i+1})^T;
           u_{i+1} = f_i(u_i);
             Do stuff;
      end
      Compute \nabla F(u_0) \mathbf{y};
                                                                         end
end
                                                                  end
```

A BETTER SOLUTION?

$$\nabla F(u_0)\boldsymbol{y} = Jf_0(u_0)^T \cdot Jf_1(u_1)^T \cdot \ldots \cdot Jf_{n-1}(u_{n-1})^T \cdot Jf_n(u_n)^T \cdot \boldsymbol{y}$$

What is the problem with Algo B?

A BETTER SOLUTION?

$$\nabla F(u_0)\boldsymbol{y} = Jf_0(u_0)^T \cdot Jf_1(u_1)^T \cdot \ldots \cdot Jf_{n-1}(u_{n-1})^T \cdot Jf_n(u_n)^T \cdot \boldsymbol{y}$$

```
\begin{array}{lll} \operatorname{proc} \operatorname{Algo} \operatorname{A}(u_0, \boldsymbol{y}) & \operatorname{proc} \operatorname{Algo} \operatorname{B}(u_0, \boldsymbol{y}) \\ \operatorname{begin} & \operatorname{begin} \\ & \operatorname{Do} \operatorname{stuff}; \\ \operatorname{for} i = 0 \ to \ n \ \operatorname{do} \\ & \begin{vmatrix} u_{i+1} = f_i(u_i); \\ \operatorname{Do} \operatorname{stuff}; \\ \operatorname{end} \\ \operatorname{Compute} \boldsymbol{\nabla} F(u_0) \boldsymbol{y}; \\ \end{array} \quad \begin{array}{ll} \operatorname{Do} \operatorname{stuff}; \\ \operatorname{for} i = 0 \ to \ n \ \operatorname{do} \\ & \begin{vmatrix} u_{i+1} = f_i(u_i); \\ \operatorname{Do} \operatorname{stuff}; \\ v_{i+1} = v_i \cdot J f_{i+1}(u_{i+1})^T; \\ \operatorname{end} \\ \end{array}
```

What is the problem with Algo B?

$$\nabla F(u_0) \boldsymbol{y} = \left(\left(\dots \left(\boldsymbol{J} f_0^T \cdot \boldsymbol{J} f_1^T \right) \cdot \dots \cdot \boldsymbol{J} f_{n-1}^T \right) \cdot \boldsymbol{J} f_n^T \right) \cdot \boldsymbol{y} \quad n \text{ MatMat ops}$$

$$\nabla F(u_0) \boldsymbol{y} = \boldsymbol{J} f_0^T \cdot \left(\boldsymbol{J} f_1^T \cdot \dots \cdot \left(\boldsymbol{J} f_{n-1}^T \cdot \left(\boldsymbol{J} f_n^T \cdot \boldsymbol{y} \right) \dots \right) \right) \quad n \text{ MatVec ops}$$

Adjoint computation

$$F_i(x_i) = x_{i+1} \quad i < l$$

$$\bar{F}_i(x_i, \bar{x}_{i+1}) = \bar{x}_i \quad i \le l$$

ADJOINT COMPUTATION

2

ADJOINT COMPUTATION

$$F_i(x_i) = x_{i+1}$$
 $i < l$
 $\bar{F}_i(x_i, \bar{x}_{i+1}) = \bar{x}_i$ $i \le l$

ADJOINT COMPUTATION

Adjoint computation

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

8

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - ightharpoonup Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

- ▶ Two buffers: store output of computations $(x_i \text{ or } \bar{x}_i)$. Initial state: contains x_0 and \bar{x}_{l+1} .
- ▶ $c_m < +\infty$ in-core slots (memory).
 - Cost to write: $w_m = 0$,
 - ▶ Cost to read: $r_m = 0$.
- ▶ $c_d = +\infty$ out-of-core slots (disk).
 - ightharpoonup Cost to write: w_d ,
 - ▶ Cost to read: r_d .

Problem formulation

We want to minimize the makespan of:

		Initial state:
AC graph:	size l	
Steps:	u_f, u_b	
Memory:	$c_m, w_m = r_m = 0,$	$\mathcal{M}_{ ext{ini}} = \emptyset$
Disks:	$c_d = +\infty, w_d, r_d,$	$\mathcal{D}_{ ext{ini}} = \emptyset$
Buffers:	$\mathcal{B}^{ op},\mathcal{B}^{ot}$	$\mathcal{B}_{\mathrm{ini}}^{\top} = \{x_0\}, \mathcal{B}_{\mathrm{ini}}^{\perp} = \{\bar{x}_{l+1}\}$

R

Previous work

GW00: REVOLVE (l, c_m) , optimal algorithm with c_m memory slots and no disk slots.

SW09: SWA * , an algorithm based on Revolve that takes disk storage into acount.

- (i) SWA $(l, c_m, c_d, w_d, r_d) \approx \text{REVOLVE}(l, c_d + c_m)^1$
- (ii) SWA^{*} $(l, c_m, w_d, r_d) = \min_{c_d = 0...l c_m} SWA(l, c_m, c_d, w_d, r_d)$

This work: optimal algorithm with disk storage.

¹out of the $c_d + c_m$ slots used by Revolve, the c_d slots the least used are considered disk slots.

A GRASP OF THE PROOF

Any algorithm works in two phases:

- ▶ The forward phase (before executing \bar{F}_l);
- ▶ The backward phase (that starts when executing \bar{F}_l);

The forward phase

In this phase:

ightharpoonup We execute all F-operations;

The forward phase

In this phase:

- \blacktriangleright We execute all F-operations;
- ▶ We write some data to disk and/or to memory.

THE BACKWARD PHASE

In this phase:

- ► We DO NOT write any data to disk (could have been done in the forward phase);
- ► All other operations are allowed.

No going back

Lemma

If \bar{x}_i is computed, then there are no F_j for $i \leq j$ (or operations involving \mathcal{B}).

.

Lemma

If x_i is written (to disk or memory), until we have executed \bar{F}_i there are no F_j for j < i (or operations involving A).

.

In this case, for a given forward phase, we get a multi-phase backward phase:

2

CHARACTERIZING THE BACKWARD PHASE

- ► m backward steps to execute;
- No disk writes or reads;
- ightharpoonup c memory checkpoints available

 $\implies r_m + \text{Revolve}(m, c)$

CHARACTERIZING THE BACKWARD PHASE

- ► m backward steps to execute;
- No disk writes or reads;
- ightharpoonup c memory checkpoints available
- $\implies r_m + \text{Revolve}(m, c)$

- ► m backward steps to execute;
- ► No disk writes;
- ightharpoonup c memory checkpoints available

 $\implies r_d + 1\text{D-Revolve}(m, c)$

a

Theorem

During the forward phase, first we write to disks, then we write to memory.

3

Theorem

During the forward phase, first we write to disks, then we write to memory.

3

Theorem

During the forward phase, first we write to disks, then we write to memory.

► $\mathcal{E}xe(\text{Revolve}(m, c + 1)) \leq \mathcal{E}xe(\text{1D-Revolve}(m, c))$

Theorem

During the forward phase, first we write to disks, then we write to memory.

- ► $\mathcal{E}xe(\text{Revolve}(m, c+1)) \leq \mathcal{E}xe(\text{1D-Revolve}(m, c))$
- $\blacktriangleright \mathcal{E}xe(1\text{D-Revolve}(m',c+1)) \le \mathcal{E}xe(\text{Revolve}(m',c+1))$

Theorem

During the forward phase, first we write to disks, then we write to memory.

- ► $\mathcal{E}xe(\text{Revolve}(m, c + 1)) \leq \mathcal{E}xe(\text{1D-Revolve}(m, c))$
- $\blacktriangleright \ \mathcal{E}xe(1\text{D-Revolve}(m',c+1)) \leq \mathcal{E}xe(\text{Revolve}(m',c+1))$

. . . . 🛅

Computing the optimal schedule

Theorem

We can compute the optimal number of disk checkpoints needed and the space between them in $O(l^2)$ with a dynamic programming algorithm to minimize execution time.

IN PRACTICE?

In realistic scenarios we expect to divide the execution time by 2 or 3.

Ratio SWA* (l, c_m, w_d, r_d) /Opt $_{\infty}(l, c_m, w_d, r_d)$ as a function of l.

· • 🖺

Going further

We know how to compute the m_i 's. But the cost of computing them is non-negligible (l^2) . Can we do better?

26

Going further

We know how to compute the m_i 's. But the cost of computing them is non-negligible (l^2) . Can we do better?

Theorem (Weak Periodicity)

Except for a bounded number of them (the bound depends on $X = (c_m, w_d, r_d)$), all the m_i 's are equal (to m_X).

• **2**6

Going further

We know how to compute the m_i 's. But the cost of computing them is non-negligible (l^2) . Can we do better?

Theorem (Weak Periodicity)

Except for a bounded number of them (the bound depends on $X = (c_m, w_d, r_d)$), all the m_i 's are equal (to m_X).

Corollary

Writing disk checkpoint every m_X forward steps is asymptotically optimal.

ADDITIONAL DATA

Makespan of periodic algo over optimal: function of l, $c_m = 10$.

CONCLUSIONS ON ADJOINT COMPUTATIONS

Some numbers:

- ▶ The adjoint computation in MITgcm runs in O(days), the gain induced by our optimal algorithm would be non negligible!
- ► Nek5000 runs on 500K cores, two processes/core on Mira. We need to take reliability into account (future work).

References:

- GW00 Griewank and Walther, Algorithm 799: Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation, TOMS, 2000
- SW09 Stumm and Walther, Multistage approaches for optimal offline checkpointing, SISC, 2009

Perspectives on I/O management

Scalable I/O management is a critical problem for Exascale.

Some directions that need to be solved:

- ► Models are missing!

 Understanding applications is necessary to design better solutions.
- ► The energy cost of I/O management is barely studied! Energy is also one of the limiting factor for the next scale.
- ► Applications need to be redesigned!

 Some data may not be as important as other, can we find new strategies to deal with them?