Rethinking HPC algorithms for Exascale: the case for Adjoint Computations

Guillaume Aupy

VANDERBILT UNIVERSITY

Scheduling 102,
 Scheduling under constraints

Guillaume Aupy

Scheduling

- p processors (or nodes or cores or computing units).
- An application represented by a DAG $\mathcal{G}=(V, E)$:
- Vertices are tasks (or functions to be computed)
- Edges represent data dependency (need to be respected)

- --

Assume tasks have unit size and there are two processors.

Motivational ExAMPLE

Assume tasks have unit size and there are two processors.

- In theory, optimal schedule $)^{-}$
\qquad . .
 . .

Motivational EXAMPLE

Assume tasks have unit size and there are two processors.

- In theory, optimal schedule $)^{-}$
- In practice, not what we expected $)_{\text {. }}$

Motivational EXAMPLE

Assume tasks have unit size and there are two processors.

- In theory, optimal schedule $)^{-}$
- In practice, not what we expected $)_{\text {. }}$

What happened?

Overview of a computer.
In general,

- Memory is small but accesses are fast;
- Disks are large but accesses are slow.

BACK TO OUR SCHEDULE

Memory
(11)
(${ }^{2}$)
 -

BACK TO OUR SCHEDULE

BACK TO OUR SCHEDULE

Memory

BACK TO OUR SCHEDULE

Memory

Back to our schedule

Back to our schedule

Back to our schedule

Can we do better (or prove that we cannot)?

Back to our schedule

Can we do better (or prove that we cannot)?

Back to our schedule

Can we do better (or prove that we cannot)?

Back to our schedule

Can we do better (or prove that we cannot)?

Back to our schedule

Can we do better (or prove that we cannot)?

Back to our schedule

Can we do better (or prove that we cannot)?

Back to our schedule

Can we do better (or prove that we cannot)?

Some numbers

(Brief) history of supercomputers at Argonne National Lab:

	Intrepid	Mira
Year	$2008-2013$	$2013-$
Peak Perf	0.557 PFlops	10 PFlops
Peak I/O Throughput	$88 \mathrm{~GB} / \mathrm{s}$	$240 \mathrm{~GB} / \mathrm{s}$

Some numbers

(Brief) history of supercomputers at Argonne National Lab:

	Intrepid	Mira
Year	$2008-2013$	$2013-$
Peak Perf	0.557 PFlops	10 PFlops
Peak I/O Throughput	$88 \mathrm{~GB} / \mathrm{s}$	$240 \mathrm{~GB} / \mathrm{s}$
I/O Tp per Flops	$157 \mathrm{~GB} /$ PFlops/s	$16.8 \mathrm{~GB} /$ PFlops $/ \mathrm{s}$

Some numbers

(Brief) history of supercomputers at Argonne National Lab:

	Intrepid	Mira
Year	$2008-2013$	$2013-$
Peak Perf	0.557 PFlops	10 PFlops
Peak I/O Throughput	$88 \mathrm{~GB} / \mathrm{s}$	$240 \mathrm{~GB} / \mathrm{s}$
I/O Tp per Flops	$157 \mathrm{~GB} /$ PFlops/s	$16.8 \mathrm{~GB} /$ PFlops $/ \mathrm{s}$

Analysis of the Intrepid system @Argonne: I/O throughput decrease (percentage per application, over 400 applications).

What next

Some directions to solve this problem:

- Better I/O Management?
- Rethinking I/O intensive applications: from computation-oriented thinking to I/O-oriented thinking.

Optimal multistage algorithms for ADJOINT COMPUTATION

Guillaume Aupy, work with Julien Herrmann, Paul Hovland \& Yves Robert

ICE-SHEET MODEL (I)

"In climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets." (wikipedia)

Model Algorithm (single timestep)

1. Evaluate driving stress $\tau_{d}=p g h \nabla s$
2. Solve for velocities

DO $i=1$, max_iter
i. Evaluate nonlinear viscosity v_{i} from iterate \boldsymbol{u}_{i}
ii. Construct stress matrix $A\{v\}$
iii. Solve linear system $A \boldsymbol{u}_{i+1}=\tau_{d}$
iv. (Exit if converged)

ENDDO
3. Evolve thickness (continuity eqn)

Automatic differentiation (AD) tools generate code for adjoint of operations

ICE-SHEET MODEL (I)

"In climate modelling, Ice-sheet models use numerical methods to simulate the evolution, dynamics and thermodynamics of ice sheets." (wikipedia)

Model Algorithm (single timestep)

1. Evaluate driving stress $\tau_{d}=p g h \nabla s$
2. Solve for velocities

DO $i=1$, max_iter

i. Evaluate nonlinear viscosity v_{i} from iterate \boldsymbol{u}_{i}
ii. Construct stress matrix $A\{v\}$
iii. Solve linear system $A u_{i+1}=\tau_{d}$
iv. (Exit if converged) ENDDO
3. Evolve thickness (continuity eqn)

Automatic differentiation (AD) tools generate code for adjoint of operations

Simpler Version:
proc Model Algorithm $\left(u_{0}, \boldsymbol{y}\right)$
begin
Do stuff; for $i=0$ to n do
$u_{i+1}=f_{i}\left(u_{i}\right)$;
Do stuff;
end
/* $F\left(u_{0}\right)=f_{n} \circ f_{n-1} \circ \ldots \circ f_{0}\left(u_{0}\right) * /$ Compute $\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}$;
end

Credit: Daniel Goldberg

ICE-SHEET MODEL (II)

$$
F\left(u_{0}\right)=f_{n} \circ f_{n-1} \circ \ldots \circ f_{1} \circ f_{0}\left(u_{0}\right)
$$

$\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot \nabla\left(f_{n} \circ f_{1}\right)\left(u_{1}\right) \cdot \boldsymbol{y}$

$$
=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y}
$$

$$
\begin{aligned}
J f^{T} & =\text { Transpose Jacobian matrix of } f \\
u_{i+1} & =f_{i}\left(u_{i}\right)=f_{i}\left(f_{i-1} \circ \ldots \circ f_{0}\left(u_{0}\right)\right)
\end{aligned}
$$

ICE-SHEET MODEL (II)

$$
F\left(u_{0}\right)=f_{n} \circ f_{n-1} \circ \ldots \circ f_{1} \circ f_{0}\left(u_{0}\right)
$$

$\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot \nabla\left(f_{n} \circ f_{1}\right)\left(u_{1}\right) \cdot \boldsymbol{y}$

$$
\begin{aligned}
&=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y} \\
& J f^{T}=\text { Transpose Jacobian matrix of } f \\
& u_{i+1}=f_{i}\left(u_{i}\right)=f_{i}\left(f_{i-1} \circ \ldots \circ f_{0}\left(u_{0}\right)\right)
\end{aligned}
$$

But then, isn't there a faster algorithm?
$\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y}$

```
proc Algo A(u},\mp@code{,}\boldsymbol{y}
begin
    Do stuff;
    for i=0 to n do
        ui+1}=\mp@subsup{f}{i}{(}(\mp@subsup{u}{i}{\prime})
        Do stuff;
    end
    Compute \nablaF F(uo)\boldsymbol{y;}
end
```

```
proc Algo \(\mathrm{B}\left(u_{0}, \boldsymbol{y}\right)\)
begin
    Do stuff;
    for \(i=0\) to \(n\) do
        \(u_{i+1}=f_{i}\left(u_{i}\right)\);
                        Do stuff;
                        \(v_{i+1}=v_{i} \cdot J f_{i+1}\left(u_{i+1}\right)^{T} ;\)
    end
    end
```

$\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y}$

What is the problem with Algo B?

A BETTER SOLUTION?

$\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}\left(u_{0}\right)^{T} \cdot J f_{1}\left(u_{1}\right)^{T} \cdot \ldots \cdot J f_{n-1}\left(u_{n-1}\right)^{T} \cdot J f_{n}\left(u_{n}\right)^{T} \cdot \boldsymbol{y}$

proc Algo A(u_{0}, \boldsymbol{y})	proc Algo $\mathrm{B}\left(u_{0}, \boldsymbol{y}\right)$
begin	begin
Do stuff;	Do stuff;
for $i=0$ to n do	for $i=0$ to n do
$u_{i+1}=f_{i}\left(u_{i}\right)$;	$u_{i+1}=f_{i}\left(u_{i}\right)$;
Do stuff;	Do stuff;
end	$v_{i+1}=v_{i} \cdot J f_{i+1}\left(u_{i+1}\right)^{T} ;$
Compute $\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}$;	end
end	end

What is the problem with Algo B?

$$
\begin{array}{ll}
\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=\left(\left(\ldots\left(J f_{0}^{T} \cdot J f_{1}^{T}\right) \cdot \ldots \cdot J f_{n-1}^{T}\right) \cdot J f_{n}^{T}\right) \cdot \boldsymbol{y} & n \text { MatMat ops } \\
\boldsymbol{\nabla} F\left(u_{0}\right) \boldsymbol{y}=J f_{0}^{T} \cdot\left(J f_{1}^{T} \cdot \ldots \cdot\left(J f_{n-1}^{T} \cdot\left(J f_{n}^{T} \cdot \boldsymbol{y}\right) \ldots\right)\right) & n \text { MatVec ops }
\end{array}
$$

$$
\begin{aligned}
F_{i}\left(x_{i}\right) & =x_{i+1} & & i<l \\
\bar{F}_{i}\left(x_{i}, \bar{x}_{i+1}\right) & =\bar{x}_{i} & & i \leq l
\end{aligned}
$$

$$
\begin{aligned}
F_{i}\left(x_{i}\right) & =x_{i+1} & & i<l \\
\overline{\boldsymbol{F}}_{\boldsymbol{i}}\left(\boldsymbol{x}_{\boldsymbol{i}}, \overline{\boldsymbol{x}}_{\boldsymbol{i}+\boldsymbol{1}}\right) & =\overline{\boldsymbol{x}}_{\boldsymbol{i}} & & \boldsymbol{i} \leq \boldsymbol{l}
\end{aligned}
$$

AdJoint computation

$$
\begin{aligned}
F_{i}\left(x_{i}\right) & =x_{i+1} & & i<l \\
\bar{F}_{i}\left(x_{i}, \bar{x}_{i+1}\right) & =\bar{x}_{i} & & i \leq l
\end{aligned}
$$

$$
\begin{aligned}
F_{i}\left(x_{i}\right) & =x_{i+1} & & i<l \\
\bar{F}_{i}\left(x_{i}, \bar{x}_{i+1}\right) & =\bar{x}_{i} & & i \leq l
\end{aligned}
$$

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Model of Computation

- Two buffers: store output of computations (x_{i} or \bar{x}_{i}). Initial state: contains x_{0} and \bar{x}_{l+1}.
- $c_{m}<+\infty$ in-core slots (memory).
- Cost to write: $w_{m}=0$,
- Cost to read: $r_{m}=0$.
- $c_{d}=+\infty$ out-of-core slots (disk).
- Cost to write: w_{d},
- Cost to read: r_{d}.

Problem formulation

We want to minimize the makespan of:

		Initial state:
AC graph:	size l	
Steps:	u_{f}, u_{b}	
Memory:	$c_{m}, w_{m}=r_{m}=0$,	$\mathcal{M}_{\text {ini }}=\emptyset$
Disks:	$c_{d}=+\infty, w_{d}, r_{d}$,	$\mathcal{D}_{\text {ini }}=\emptyset$
Buffers:	$\mathcal{B}^{\top}, \mathcal{B}^{\perp}$	$\mathcal{B}_{\text {ini }}^{\top}=\left\{x_{0}\right\}, \mathcal{B}_{\text {ini }}^{\perp}=\left\{\bar{x}_{l+1}\right\}$

Previous work

GW00: Revolve $\left(l, c_{m}\right)$, optimal algorithm with c_{m} memory slots and no disk slots.

SW09: SWA*, an algorithm based on Revolve that takes disk storage into acount.
(i) $\operatorname{SWA}\left(l, c_{m}, c_{d}, w_{d}, r_{d}\right) \approx \operatorname{Revolve}\left(l, c_{d}+c_{m}\right)^{1}$
(ii) $\operatorname{SWA}^{\star}\left(l, c_{m}, w_{d}, r_{d}\right)=\min _{c_{d}=0 \ldots l-c_{m}} \operatorname{SWA}\left(l, c_{m}, c_{d}, w_{d}, r_{d}\right)$

This work: optimal algorithm with disk storage.
${ }^{1}$ out of the $c_{d}+c_{m}$ slots used by Revolve, the c_{d} slots the least used are considered disk slots.

A GRASP OF THE PROOF

Any algorithm works in two phases:

- The forward phase (before executing \bar{F}_{l});
- The backward phase (that starts when executing \bar{F}_{l});

THE FORWARD PHASE

In this phase:

- We execute all F-operations;

The FORWARD PHASE

In this phase:

- We execute all F-operations;
- We write some data to disk and/or to memory.

The Backward Phase

In this phase:

- We DO NOT write any data to disk (could have been done in the forward phase);
- All other operations are allowed.

No GOING BACK

Lemma

If \bar{x}_{i} is computed, then there are no F_{j} for $i \leq j$ (or operations involving \mathcal{B}).

Checkpoint persistence (I)

Lemma
 If x_{i} is written (to disk or memory), until we have executed \bar{F}_{i} there are no F_{j} for $j<i$ (or operations involving \mathcal{A}).

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase backward phase:

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase backward phase:

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase backward phase:

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase backward phase:

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase backward phase:

Checkpoint persistence (II)

In this case, for a given forward phase, we get a multi-phase backward phase:

Characterizing the backward Phase

- m backward steps to execute;
- No disk writes or reads;
$\Longrightarrow r_{m}+\operatorname{Revolve}(m, c)$
- c memory checkpoints available

Characterizing the Backward phase

- m backward steps to execute;
- No disk writes or reads;

$$
\Longrightarrow r_{m}+\operatorname{Revolve}(m, c)
$$

- c memory checkpoints available

- m backward steps to execute;
- No disk writes;
$\Longrightarrow r_{d}+1 \mathrm{D}-\operatorname{REVolvE}(m, c)$
- c memory checkpoints available

Characterizing The forward phase

Theorem

During the forward phase, first we write to disks, then we write to memory.

Characterizing The forward phase

Theorem

During the forward phase, first we write to disks, then we write to memory.

Characterizing The forward phase

Theorem

During the forward phase, first we write to disks, then we write to memory.

- $\mathcal{E x e}(\operatorname{Revolve}(m, c+1)) \leq \mathcal{E} x e(1 \mathrm{D}-\operatorname{Revolve}(m, c))$

Characterizing The forward phase

Theorem

During the forward phase, first we write to disks, then we write to memory.

- $\mathcal{E x e}(\operatorname{Revolve}(m, c+1)) \leq \mathcal{E} x e(1 \mathrm{D}-\operatorname{Revolve}(m, c))$
- $\mathcal{E x e}\left(1 \mathrm{D}-\operatorname{Revolve}\left(m^{\prime}, c+1\right)\right) \leq \mathcal{E} x e\left(\operatorname{Revolve}\left(m^{\prime}, c+1\right)\right)$

Characterizing The forward phase

Theorem

During the forward phase, first we write to disks, then we write to memory.

- $\mathcal{E x e}(\operatorname{Revolve}(m, c+1)) \leq \mathcal{E} x e(1 \mathrm{D}-\operatorname{Revolve}(m, c))$
- $\mathcal{E x e}\left(1 \mathrm{D}-\operatorname{Revolve}\left(m^{\prime}, c+1\right)\right) \leq \mathcal{E} x e\left(\operatorname{Revolve}\left(m^{\prime}, c+1\right)\right)$

Computing The optimal schedule

Computing The optimal schedule

Computing The optimal schedule

COMPUTING THE OPTIMAL SCHEDULE

Computing the optimal schedule

Theorem

We can compute the optimal number of disk checkpoints needed and the space between them in $O\left(l^{2}\right)$ with a dynamic programming algorithm to minimize execution time.

In PRACTICE?

In realistic scenarios we expect to divide the execution time by 2 or 3 .

$$
-c_{m}=2 \quad-\quad c_{m}=5 \quad-c_{m}=10 \quad \bullet c_{m}=25
$$

(a) $w_{d}=r_{d}=1$

(b) $w_{d}=r_{d}=5$

Ratio $\operatorname{SWA}^{\star}\left(l, c_{m}, w_{d}, r_{d}\right) / \operatorname{Opt}_{\infty}\left(l, c_{m}, w_{d}, r_{d}\right)$ as a function of l.

Going Further

We know how to compute the m_{i} 's. But the cost of computing them is non-negligible $\left(l^{2}\right)$. Can we do better?

Going Further

We know how to compute the m_{i} 's. But the cost of computing them is non-negligible $\left(l^{2}\right)$. Can we do better?

Theorem (Weak Periodicity)

Except for a bounded number of them (the bound depends on $X=\left(c_{m}, w_{d}, r_{d}\right)$), all the m_{i} 's are equal (to m_{X}).

Going FURTHER

We know how to compute the m_{i} 's. But the cost of computing them is non-negligible $\left(l^{2}\right)$. Can we do better?

Theorem (Weak Periodicity)

Except for a bounded number of them (the bound depends on $X=\left(c_{m}, w_{d}, r_{d}\right)$), all the m_{i} 's are equal (to m_{X}).

Corollary

Writing disk checkpoint every m_{X} forward steps is asymptotically optimal.

ADDITIONAL DATA

Makespan of periodic algo over optimal: function of $l, c_{m}=10$.
B

Conclusions on adjoint computations

Some numbers:

- The adjoint computation in MITgem runs in O (days), the gain induced by our optimal algorithm would be non negligible!
- Nek5000 runs on 500 K cores, two processes/core on Mira. We need to take reliability into account (future work).

References:
GW00 Griewank and Walther, Algorithm 799: Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation, TOMS, 2000

SW09 Stumm and Walther, Multistage approaches for optimal offine checkpointing, SISC, 2009

Perspectives on I/O management

Scalable I/O management is a critical problem for Exascale.

Some directions that need to be solved:

- Models are missing!

Understanding applications is necessary to design better solutions.

- The energy cost of I/O management is barely studied! Energy is also one of the limiting factor for the next scale.
- Applications need to be redesigned!

Some data may not be as important as other, can we find new strategies to deal with them?

