INVENTEURS DU MONDE NUMERIQUE

Static vs Dynamic Scheduling Strategies

Olivier Beaumont (Inria Bordeaux)

Joint work with Emmanuel Agullo, Lionel Eyraud-Dubois, Abdou
Guermouche, Julien Hermann, Suraj Kumar, Thomas Lambert, Loris
Marchal, Samuel Thibault,...

Schediilline for larce ccale eveteme

Qutline

Introduction and Background
Context and Goal of the Talk
Dynamic Runtime Schedulers (StarPU)

Qutline

Introduction and Background
Context and Goal of the Talk

Background: Evolution of parallel hardware

v

Multicore chips are commonplace, with complex memory

hierarchies

v

v

>

vV vy vy VvVyYy

v

Heterogeneity seems to be a solid trend
Many crucial features that are hard to model

Many heterogeneous Processing Units

With non-symmetric access to the distributed memory
Shared communication resources

Shared caches

Shared access to storage resources

Complicated co-scheduling effects

+ failures, DVFS

Scheduling is hard

Background — Scheduling Actual Applications

» Start with a code

Algorithm 1 Pseudocode of the tiled Cholesky factorization
1. fork=0ton—1do
2: Alk][k] < POTRF(A[K][k] RW)

33 fori=k+1lton—1do

4: Ali][k] <= TRSM(A[K][k] R, A[i][k] RW)

5. end for

6: forj=k+1ton—1do

7 A[i]lIl < SYRK(A[][K] R, A[][i] Rw)

8: fori=j+1ton—1do

0: Ali][j] «+ GEMM(A[i][k] R, A[j][k] R, A[i][j] RW)
10: end for

11: end for

12: end for

IML—

Background — Scheduling Actual Applications

» Start with a code
» Build the task graph

GEMM_3.3_0

Background — Scheduling Actual Applications

» Start with a code
» Build the task graph
» Find the resource allocation and the schedule
CPU) T [e [

crul T 7
crL2 I []]
I

CPU3 I
crus TN [
CcpPUs | I | I NN [.

crue I ——
cru7 [I |

O
GpU1 T I O N TR SO [TV TV (TR DO VIV) [
[CicShi NEANE NESRINEE 0 NANGREREEVINVIGINGNGINAR/NEE 0 NNUNUNRINNENENIL ANN) 0 NED) NEEIE REED ENIREERINTEEEEND

O poTRF M TRSM [SYRK B GEMM

l&“’“ﬂ—

Background — Scheduling Actual Applications

Start with a code
Build the task graph
Find the resource allocation and the schedule

Limitations (for Cholesky)

» Heterogeneity makes things harder
» Simplifying models (co-scheduling effects, bus sharing,...)
» Needs to be done again for any new architecture !

vV v VY

v

I@*‘f—

Background: Can we rely on Static Schedules ?

v

Scheduling and resource allocation are hard in general

v

and there exist many uncertainties.
Thus, deciding in advance

» where to place tasks
» when/in which order executing them

v

can make the system very slow (due to idle times).

v

Makes the use of classical static strategies questionable

o T vt o smmrs ST

Solutions to Cope with Uncertainties

» On the theoretical side: robust scheduling
» Given probability distribution of execution/transfer durations
» Find (allocation/schedule) that minimizes expected makespan
» Bad point: makes optimization problems even extremely harder (see
Erik’s talk) !
» On the practical side: runtime systems
» Fault Tolerance: checkpointing, replication
» Scheduling and Load Balancing:
Mostly dynamic greedy strategies
(e.g. Hadoop, PaRSEC, StarSs, KAAPI, StarPU)
» where runtime decisions are based on
> state of the resources

> estimations of processing & transfer times
> add static priorities to choose between ready tasks

.4“&,—

Goal in this talk

» Dynamic Strategies:
» What is the impact of deciding at runtime (myopic vision) ?
» Static Strategies :
» What is the impact of bad estimations (astigmatic vision) ?
» Combining both ?
» How to model the behavior of dynamic schedulers ?
> Balls into Bins games, Power of Two choices, Ordinary Differential
Equations
» Can inject static knowledge into dynamic schedulers ?
> Affinities between tasks and resources, Specific Dynamic Policies
» Can inject dynamic adaptations into static schedulers ?
» Change local ordering, Work Stealing

IQW—

Focus on three basic kernels only

» Map(Reduce) Tasks (with LM and SI)
» No dependencies, input data already replicated (HDFS, GFS),
» Focus on the impact of replication.
» Matrix Multiplication (with Thomas Lambert, LED, AG)
» Tasks are independent but depend on input files
» Focus on data transfers
» Cholesky Factorization (with Suraj Kumar, EA, LED, AG, JH, ST)
» 4 different kernels, dependencies, unrelated execution times,
» But it is easy to overlap communications
» Focus on the impact of non-uniformity.

IML—

Qutline

Introduction and Background

Dynamic Runtime Schedulers (StarPU)

Runtime Systems (StarPU)

‘ HPC Applications

Parallel Libraries

Parallel
Compilers

» Dynamically

» Perform Load Balancing
» React to Hardware Feedback

» Tasks (may) have multiple
implementations
» Upper layers: how data are
accessed

StarPU

Drivers (CUDA, OpenCL)

StarPU policy: Basic Idea

» Allocate tasks to resources in advance
» Overlap Comms with Computations

#1
» When a task becomes ready cpuFt | .
> ie its dependencies are released U2 | | II
. 1
» Try all possible resources I

, . T I — —

» Estimate ending time based on ; I
» expected running time based on history, gu#l EEEEEET
parametric cost-model,... :
» expected release time of the resource gpu #2 Clili[;
» expected transfer time 1

» choose the resource with smallest fime

expected completion time

StarPU po

4GPUs 4 16 CPUs |

4GPUs +4 CPUs - - - o ”
100 38R I3ER T +12 CPUs
TGPUs+1CPUs = e ~200 GFlops
MAGMA =} o e b s s mim e e i e m e i e
o . e e
LA B T * (although
2 &0 P i i 12 CPUs alone
2 b ~150 Gflops)
400 = :
200 -

0
0 5000 10000 15000 20000 25000 30000 35000 40000

» MAGMA with use of GPUs only (+1 CPU per GPU)
» some kind of super-linear speedup

» sgeqrt: CPU 9Gflops, GPU 30 Gflops, speedup x3
» somqr: CPU 9Gflops, GPU 230 Gflops, speedup x27
» StarPU: 20% of sgeqrt on CPUs, 93% of somqr of GPUs

» Heterogeneous architectures are cool !
.&Lzz’a—-

Qutline

MapReduce Tasks
Mapreduce Basics
Replication and Balls into Bins Games
Static vs Dynamic Scheduling

. R s oo T

Qutline

MapReduce Tasks
Mapreduce Basics

MapReduce basics

» Well known framework for data-processing on parallel clusters
» Popularized by Google, open source implementation: Apache
Hadoop
» Large data files split into chunks that are
» scattered on the platform
> replicated using HDFS for Hadoop
> there is a time for replication and a time for execution
»

Basic Dynamic Scheduling Strategy

» When a Map slot is available on a processor
» Choose a local chunk if any

» Otherwise choose any unprocessed chunk and transfer data

IQW—

A few remarks

» If all execution times were known (and rather homogeneous)
» and if the application was the only one to execute at runtime
» the problem would be relatively easy to solve
> (Ok, still NP Complete but easy to efficiently approximate under
realistic assumptions)
» Replication is used

» for fault tolerance (a little bit)
> to improve task localilty at runtime (mostly)

Iﬁw—

Qutline

MapReduce Tasks

Replication and Balls into Bins Games

Impact of Replication

> Rationale:
> the higher is replication ratio (typical value is 3)
> the higher is the fraction of local tasks (without data transfers)
» More chances to get executed locally

p=1000 processors, m=10.000 tasks
0.2 T T T T T T

01 b MapReduce simulatiolnj +

replication factor

» Replication is efficient

» 16% of non local communications without replication
» < 5% when r =2

.&u’a—-

Better model: Makespan without replication

» Without replication: each chunk is on a single processor

» Processor execution time = sum of chunk sizes
» Similar to the maximum load of a bin in balls-in-bins:

» With homogeneous tasks, when p is close to n,

log p

log (plogp>

» With heterogeneous tasks, see [Raab & Steeger'13], [Berenbrick'08]

IML—

M ~ whp, log p times the expected value !

Better model: Makespan WITH replication

» Closely related to Balls-In-Bins distribution with r choices:

» For each ball, select r bins at random
» Allocate ball to the least loaded bin among them
» Also known as the power of 2 (r = 2) choices

» Balls-In-Bins with multiple choices:
» For ball B;, place B; in least loaded bin with indexes in RC;

Rem: load-balancing during the allocation, known weights
» Modified MapReduce:

» For task T;, place a copy of T; on procs with indexes in RC;
» When processor P, becomes idle, execute a local task (if any)

Rem: load-balancing at runtime, no need to know the weights !

Theorem.
The makespan of Modified MapReduce is equal to the maximum load

of Balls-In-Bins with multiple choice
.&u’a——

Qutline

MapReduce Tasks

Static vs Dynamic Scheduling

Impact of Dynamic Scheduling

» Randomized replication
» Randomization is necessary due to (possibly huge) delay between
data allocation and execution
» is "cheap” (since it is done offline)
» dramatically reduces the number of communications
» Can we do better at runtime ?
» once the allocation is known
can we pre-compute affinities between tasks and resources
for each processor, set of preferred local tasks
ie tasks it would have run if everything was stable, homogeneous,...
run non preferred local tasks if all preferred tasks have been executed

vV vy VvYyy

Injecting Static Knowledge in Dynamic Schedulers

» How to compute preferred tasks ?
» for homogeneous tasks
» b— matching problem amenable to a flow problem
» can even be solved in polynomial time.

=20 processors, m=160 tasks.

EE o+t

fraction of non local tasks

» Conclusion:
» as soon as r = 2, almost all tasks can be executed locally

» without changing the makespan !
.&u’a—-

Qutline

Outer Product and Matrix Multiplication
Static Strategies
Randomized Dynamic Strategies
Static vs Dynamic

. R s oo T

Qutline

Outer Product and Matrix Multiplication
Static Strategies

Optimization Problem [IPDPS’'16] T. Lambert+ [EuroPar'16]

» Problem: partition the square
[0; 1] x [0; 1] so that
> Xk X Yk = Sk
» > (Xk + yk) is minimized

» Lower bound: 22\/5

» NP-Complete, introduced in 2001

> Approximation Ratio £, then 2 (Nagamochi et al.)

> then 13 = 1.15 (Armin Flgenschuh) under strong conditions (that
do not hold true for CPU-GPU platforms)

> We built a \% = 1.15 approx algorithm without conditions (based

on ugly, long and technical proof), can be generalized to cube

partitioning.

Qutline

Outer Product and Matrix Multiplication

Randomized Dynamic Strategies

. R s oo T

StarPU Dynamic Strategy [HPDC'14]

vector b
BN (after reordering a and)
Bl data on Py

Bl processed

vector a

StarPU data-aware strategy DYNAMIC:
Idea : favor tasks for which processors already hold some data.

1.
2.

Iﬁw—

StarPU Dynamic Strategy [HPDC'14]

vector b
(after reordering a and b)

B 2w)
Bl data on Py
Bl processed
I data sent to Py

StarPU data-aware strategy DYNAMIC:
Idea : favor tasks for which processors already hold some data.

vector a

1. When Py requests a task, send a new couple (aj, bj) to Py
2.

IML—

StarPU Dynamic Strategy [HPDC'14]

vector b

BN W (after reordering a and b)
Bl data on Py

Bl processed
I data sent to Py
B allocated to Py

vector a

StarPU data-aware strategy DYNAMIC:
Idea : favor tasks for which processors already hold some data.

1. When Py requests a task, send a new couple (aj, bj) to Py

2. Allocate all available tasks a; x bj (for by already on Py) Allocate
all available tasks a; x bj (for a; already on Py)

.é&u’a—-

Dynamic2Phases: Analysis (1)

» Assume that the size N of both vectors is large
» Consider a fluid relaxation

» Describe the continuous system using Ordinary Differential Equations

> Ratio x = y/N of elements of a and b on
Py at tk(X)

» Basic step: when this ratio goes from x
tox+dx=y/N+{/N

» In M : all tasks processed (by Py or other
processors)

Dynamic2Phases: Analysis (1)

=xN r‘
R > In . gk(x) is the fraction of
unprocessed tasks (assumed
uniformly distributed)

» Time for P, to compute the red
tasks:

2x 6x gr(x)N?
Sk

= tk(X+5X) — tk(X)

» Number of tasks from computed by other processors during
this step: (ti(x + 0x) — tk(x)) D2z Si
» Evolution of gi(x):

gr(x + 0x) — g(x) = g(x)ox 7% where ay = Z"Skk i

= gi(x) = (1 — x?)«
l"’“&’—

Dynamic2Phases: Analysis (1)

y=xN » determine hg(x), the number of the
 —— tasks

> in the grey area

» but not processed by Py

» hy is solution of a simple ODE.

» that can be used to determine when
to switch between strategies

> It works very well in practice !

» Comparison discrete execution vs. continuous analysis:

3 — DynNamic
o == DYNAMIC2PHASES
H — Analysis
g 2.8 \
< i\
s \
R \
N e Y
é \‘\ \ <--
= g 5
% ‘\\ s
] N
k] N Ualps”
£ 22 A "
] \\Laz/

.é&u’a—-

Add static knowledge in Dynamic Strategies

Comparison with previous heuristics:

=% ' SORTED
—+— RANDOM
7| =8 DyNaMmic
: =¥ DYNAMIC2PHASES
x,x-oe-x**xx,(_,‘ -6~ Analysis

©
|

o
|

.
s :
R S
+ x"""’&x.x

IS
|

Normalized communication amount

N}

T T T
100 200 300

Number of processors

» When to switch can easily be computed at runtime

» and be injected in StarPU scheduling policy
» — add application-dependent knowledge to dynamic policy

» About 2x lower bound on the communication amount

5 » Is it good or bad ?
.hu’a—-

Qutline

Outer Product and Matrix Multiplication

Static vs Dynamic

Comparison of Static and Dynamic [SBACPAD’15]

» Static Strategies are bad...

> to cope with unexpectedly
slow resources

» Dynamic Strategies are good
> to cope with uncertainties
» but they are not so clever...

» Basic Dynamic: 2.5
» Dynamic2Phases: 2

> but they are clever !
» Worst Case 1.15

» Average Case < 1.05
Setting for Comparison
» Wrong processing estimation times given to Static
» Force makespan through Work Stealing (keep resources busy)

» Bad Estimations + Work Stealing induce extra data transfers

I&“’aﬂ—

Comparison of Static and Dynamic Strategies
» Static but wrong processing estimation times
» Uniform .8 or .95,
» Gaussian with 0.1 to 1 variance
» Makespan (either 1 or 2) or (either 1 or 10)
> Node
» Quasi homogeneous platform with 20 processors
» heterogeneous with 10 CPUs + 4 GPUs

» And the winner is...

R

Comparison of Static and Dynamic Strategies
» Static but wrong processing estimation times
» Uniform .8 or .95,
» Gaussian with 0.1 to 1 variance
» Makespan (either 1 or 2) or (either 1 or 10)
> Node

» Quasi homogeneous platform with 20 processors
» heterogeneous with 10 CPUs + 4 GPUs

» And the winner is... Static !

» black is dynamic, colored are hybrid
(static distribution + WS to cope with uncertainties)

Homo-20 Hetero-4

T A A T N |

w
o
|

-

F
=
E3
- -
+*
= —
‘g:_: © camjames.
="
+= =T
prra—

B
Q
<}
<
2
T
st
<
=
E
£20
S
o
©
N
‘©
=
o
z

Qutline

Cholesky Factorization
StarPU on Cholesky
Improved Dynamic Schedulers
Static vs Dynamic

. R i o T

Qutline

Cholesky Factorization
StarPU on Cholesky

Task Based Cholesky Factorization

Algorithm 2 Pseudocode of the tiled Cholesky factorization
1: for k=0ton—1do
2: Alk][k] < POTRF(A[K][k] RW)

33 fori=k+1ton—1do

4: Ali][k] < TRSM(A[K][k] R, A[i][k] RW)

5. end for

6: forj=k+1lton—1do

7: Afillil + SYRK(A[][k] R, A[][i] Rw)

8: fori=j+1ton—1do

0: Ali][j] «+ GEMM(A[i][k] R, A[i][k] R, A[i][]] RW)
10: end for

11: end for

12: end for

IML—

Cholesky task graph

Scheduling of Cholesky tasks with StarPU

CPU

GPUO

Scheduling of Cholesky tasks with StarPU

CPU

H: GPUO

Scheduling of Cholesky tasks with StarPU

CPU

GPUO

Scheduling of Cholesky tasks with StarPU

1

CPU

H: GPUO

Scheduling of Cholesky tasks with StarPU

CPU

m GPUO

Scheduling of Cholesky tasks with StarPU

CPU

E N

Scheduling of Cholesky tasks with StarPU

CPU
E N
CPU GPU1

» Handles dependencies

Scheduling of Cholesky tasks with StarPU

CPU
E N

CPU GPU1

» Handles dependencies

Scheduling of Cholesky tasks with StarPU

CPU
E b

CPU GPU1

» Handles dependencies

Scheduling of Cholesky tasks with StarPU

CPU
E b

CPU GPU1

» Handles dependencies
» Handles scheduling (e.g. HEFT)

.étzz’a.—-

Scheduling of Cholesky tasks with StarPU

CPU
GPUO
E M

CPU

GPU1

=Er3

» Handles dependencies
» Handles scheduling (e.g. HEFT)

.&u’a_-

Scheduling of Cholesky tasks with StarPU

CPU

E_j;"_

GPU1 GPUO

CPU

=Er3

» Handles dependencies
» Handles scheduling (e.g. HEFT)

.&u’a_-

Machine Information

» Heterogeneous settings

» Hexacore Westmere Intel Xeon X5650 processors
(12 CPU cores per node):
9 CPU cores since 3 are dedicated to data transfers
» 3 Nvidia Tesla M2070 GPUs

POTRF | TRSM | SYRK | GEMM
~23x | ~11x | ~26x | ~29x

Table : GPUs relative performance

I"M—-—

Achievable Solutions, n = 12

» Best Known Solution (Constraint Prog., 15 days !): 785 GFlops

cruo N [.)
crul I —

GpU1 T T RO o T NN ST (T T (T O T T D [
SN BENEE . NNNNINEN B ENNNNSEANIIRVININNNARNSA[NSE N ENSENENINNNANAE (NIN) N §EN) AN

Oporrr M TRSM [SYRK B GEMM

» StarPU schedule: 680 GFlops, not that bad but

Achievable Solutions, n = 12

» Best Known Solution (Constraint Prog., 15 days !): 785 GFlops

cruo N [.)
crul I —
ooy ——— e e

CPU NN e E—

cPu4 T) [

cpUs T T N [

crue I

cru7 [

GpU1 T T RO o T NN ST (T T (T O T T D [
[GGNN EENEN _ NNNNINEN NNNSESNANIIRIIN)NNNARERGNNN N NNNANANINNNNSEN 61N B §jEN] EE)EEEENC ENISNEEIEIEEENI

Oporrr M TRSM [SYRK B GEMM

» StarPU schedule: 680 GFlops, not that bad but

cruo [COJ C3 C3 343 —
CPUI
CPU2
CPU3
CPU4
CPUS
CPU6
CcpU7

O poTrRr M TRSM O SYRK B GEMM

> very disappointing...
but enough to achieve pseudo-super-linear speedu

Qutline

Cholesky Factorization

Improved Dynamic Schedulers

Improving StarPU scheduler (1) [1PDPs’16, S. Kumar]

cruo [O Cd C3C43 — — —

M POTRF M TRSM [F SYRK B GEMM

» StarPU is too cautious

» It fails to allocate enough tasks on a CPU

» even though it would not have induced idle time on a GPU
» Improvement over default policy

» Pseudo-Allocate next task on CPU

» Simulate StarPU until the ending time of the task
» using SimGRID simulator

» Reallocate on a GPU iff it induces idle time on GPU

» and several variants.

.étzz’a.—-

Improving StarPU scheduler (I1)

GFlop/s

1000

900

800

700

600

500

400

300

200 heft
heftp
heftp+LET
100 heftp+GB
0 heftp+MMS

0 4 8 12 16 20 24 28 32

Matrix Size(multiple of 960)
» Variants: how far is it worth to simulate ?

» for n =12, 680 — 725 (best 785)
» much more expensive than default policy, but

» Dedicate one CPU to compute the schedule !
- —

LA

Acceleration Ratio-based Policies (1)

POTRF | TRSM | SYRK | GEMM
~2.3x%x ~11x | ~26x | ~29x

Table : GPUs relative performance

» GPUs should prefer GEMMs to SYRKs to TRSMs to POTRFs
» CPUs should prefer POTRFs to TRSMs to SYRKs to GEMMs
» implement this through priority queues

I@*‘f—

Acceleration Ratio-based Policies (1)

POTRF | TRSM | SYRK | GEMM
~2.3x%x ~11x | ~26x | ~29x

Table : GPUs relative performance

» GPUs should prefer GEMMs to SYRKs to TRSMs to POTRFs
» CPUs should prefer POTRFs to TRSMs to SYRKs to GEMMs

» implement this through priority queues

cpuo

cpUl I]
cpu2 T
cpu3 T T | — [v—]
cru+ I I I
crus I I I —
cpuo I I [— |
rrrrr I I
i S — [E—]
(CHm junninnansinnninnin} O 80 OO W (e 1000 nIm] [} o [i
m m (0 (I (W0 OO0 (T i n1m BRI m O ma mo
[[m] 0 T (0 (T T (0 00 o m I ICmE = mr mn

Opotr MTRsM Esyrc B GEMM

» works poorly :440 Gflops vs Best 785 GFlops:

5 GPUs wait for tasks performed by CPUs
l&‘zu’a——

Acceleration Ratio-based Policies (1)

» GPUs should prefer GEMMs to SYRKs to TRSMs to POTRFs
» CPUs should prefer POTRFs to TRSMs to SYRKs to GEMMs

» merge some queues + allow task spoliation (if GPU gets idle)

Acceleration Ratio-based Policies (1)

» GPUs should prefer GEMMs to SYRKs to TRSMs to POTRFs
» CPUs should prefer POTRFs to TRSMs to SYRKs to GEMMs

» merge some queues + allow task spoliation (if GPU
[1 [] [Wl T

[TPOTRF M TRSM [1SYRK WM GEMM

» works fine: 750 (best known solution is 785)

l‘:‘m"‘f—

Qutline

Cholesky Factorization

Static vs Dynamic

Static vs Dynamic Strategies

v

To do a fair comparison, let us add uncertainties

v

task completion times belong to [90%, 110%]x expected time

v

In Static Schedules, allow GPUs to perform spoliation

And the winner is:

v

Static vs Dynamic Strategies

v

To do a fair comparison, let us add uncertainties

v

task completion times belong to [90%, 110%]x expected time

v

In Static Schedules, allow GPUs to perform spoliation

v

And the winner is: Static Again !

12

780 - | » red: Pure Static

» green: Hybrid (Static +
GEMM Spoliation)

1 | ‘ | » cyan: Hybrid (Static +
GEMM-SYRK Spoliation)

770 =

GFlop/s

750 -

740 -

| » purple: Best Dynamic

QOutline

Context and Goal of the Talk
Dynamic Runtime Schedulers (StarPU)

Mapreduce Basics
Replication and Balls into Bins Games
Static vs Dynamic Scheduling

Static Strategies
Randomized Dynamic Strategies
Static vs Dynamic

StarPU on Cholesky
Improved Dynamic Schedulers

Static vs Dynamic
l&mf{”c'_

Static or Dynamic ?

» First Conclusions

» Dynamic Schedulers achieve good results
» They are able to use both fast and slow resources

» Static Schedules are (expected to be) bad since they are

» Hard to compute
» Likely to perform badly under uncertainties

» But...

I‘W‘—-—

Dynamic Schedulers are far from the optimal

» MapReduce and Non Local Map Tasks
» Hadoop: replicates to improve locality

> greedily allocate tasks to resources
> induces comms (highly depends on settings, was 10%)

» Static policy:
> solution of a b—matching problem, almost no comms
» Matrix-Multiplication and data transfers
» StarPU: puts tasks resources that already hold input data
» 25X the lower bound
» Static policy: based on an initial partitioning of the matrices
> NP-Complete but 1.15 worst case and on av. 1.05 the LB

» Cholesky and Heterogeneous Unrelated Resources
» StarPU: Allocate on a CPU if it ends faster than on GPUs
> with n =12, 680 GFlops (still better GPUs only)
» Static: Schedule based on Brute Force Constraint Prog.
» Hard Optimization Problem but 785 GFlops (even with noise

.&u’a_-

Injecting Static Knowledge into Dynamic Schedulers

» MapReduce and Non Local Map Tasks
» Use Static Optimal Solution to find local preferred tasks
» — works well even with non homogeneous tasks

» Matrix-Multiplication and data transfers

» StarPU policy: — 2.5x the lower bound
> Analyze the fluid relaxation of the system — 2x LB
> Best Static — 1.05x LB

» Cholesky Factorization: Heterogeneous Unrelated Resources

StarPU policy — 680 GFlops

Use Simulation to have a less myopic policy — 725 GFlops
Use Knowledge of Cholesky to define affinities — 760 GFlops
Hard Combinatorial Optimization Problem — 785 GFlops

I‘w&f—

v

v vy

Injecting Dynamism into Static Policies

» MapReduce and Non Local Map Tasks

» Replication enables to cope with uncertainties in execution times

» Matrix-Multiplication and data transfers
» |If processing times fluctuate
» Start with Static then Use Work Stealing
> 1.05 — 1.5x (for extreme & unrealistic variations)
» still better than the 2.5 or even 2
» Cholesky Factorization: Heterogeneous Unrelated Resources
» If processing time Fluctuate

> Keep the same allocation + ordering of tasks
> except if GPUs get idle and CPUs perform GEMMs 785 — 770

GFlops
> still better than 760 GFlops

IML—

Static or Dynamic ?

» Static Schedules are bad since they are
» Are hard to compute

> Are likely to perform badly under uncertainties

Static or Dynamic ?

» Static Schedules are bad since they are
» Are hard to compute
> True not so much for MR and MM but Cholesky (n = 12) took 15
days)-;
> Are likely to perform badly under uncertainties

» Not True for MR, MM and Cholesky:
» Adding some Work Stealing works well in practice

I

Static or Dynamic ?

» Static Schedules are bad since they are
» Are hard to compute
> True not so much for MR and MM but Cholesky (n = 12) took 15
days)-;
> Are likely to perform badly under uncertainties
» Not True for MR, MM and Cholesky:
> Adding some Work Stealing works well in practice
» Still many things to do
» Three simple kernels only
» but we tried our best in all directions !
» There is plenty of room

» Work on Optimization Problems for specific applications
> Inject Knowledge of the Application into Dynamic Schedulers

IQW—

Static or Dynamic ?

» Static Schedules are bad since they are
» Are hard to compute
> True not so much for MR and MM but Cholesky (n = 12) took 15
days)-;
> Are likely to perform badly under uncertainties
» Not True for MR, MM and Cholesky:
> Adding some Work Stealing works well in practice
» Still many things to do
» Three simple kernels only
» but we tried our best in all directions !
» There is plenty of room

» Work on Optimization Problems for specific applications
> Inject Knowledge of the Application into Dynamic Schedulers

Thank You ! Mail to {Olivier.Beaumont@inria.fr}

2 %1 year postdoc positions starting anytime before Dec 2016
.hu’a—-

	Introduction and Background
	Context and Goal of the Talk
	Dynamic Runtime Schedulers (StarPU)

	MapReduce Tasks
	Mapreduce Basics
	Replication and Balls into Bins Games
	Static vs Dynamic Scheduling

	Outer Product and Matrix Multiplication
	Static Strategies
	Randomized Dynamic Strategies
	Static vs Dynamic

	Cholesky Factorization
	StarPU on Cholesky
	Improved Dynamic Schedulers
	Static vs Dynamic

	Conclusion

