Computing the expected longest path of task graphs in the presence of silent errors

Henri Casanova, Julien Herrmann, Yves Robert

Nashville - May 19, 2015

Outline

(9) Motivation

2 Approximation for expected longest path

3 First order approximation for silent errors
(4) Experiments
(5) Conclusion

Outline

2 Approximation for expected longest path

3 First order approximation for silent errors
(4) Experiments
(5) Conclusion

Motivation

Why do we need to compute longest paths in graphs?

- HPC applications seen as a computational workflow: \hookrightarrow Vertices: tasks with execution time $\mathrm{x}_{\mathrm{i}} \in \mathbb{R}^{+}$
\hookrightarrow Edges: data dependencies
- List scheduling:
\hookrightarrow Critical Path Scheduling (based on bottom-level) \hookrightarrow HEFT algorithm (for heterogeneous environments)

Motivation

Longest path:
$L=X_{6}+\max \left(X_{5}+\max \left(X_{2}, X_{3}\right)\right.$,

$$
\left.X_{4}+X_{2}\right)
$$

$$
+X_{1}
$$

- Deterministic weights:
\hookrightarrow Deap-first search: $O(|V|+|E|)$
- Random weights (PERT networks):
$\hookrightarrow L$ is a random variable
\hookrightarrow Computing L's distribution: \#P-complete
\hookrightarrow Computing L's expected value: \#P-complete

Outline

2 Approximation for expected longest path
(3) First order approximation for silent errors
4. Experiments
(5) Conclusion

Monte-Carlo approach

- For each task: weight is sampled from its probability distribution:

$$
x_{i} \leftarrow X_{i}
$$

- Longest path is computed:

$$
L\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- Repeat a large number of
 iteration
\hookrightarrow gives an empirical expected value

Approximation by a series-parallel graph

We deal with independent variables!

- $X_{1}+X_{2}$: convolution of density functions

$$
f_{X_{1}+X_{2}}(x)=\int_{t} f_{X_{1}}(t) f_{X_{2}}(x-t) d t
$$

- $\max \left(X_{1}, X_{2}\right)$: product of cumulative functions

$$
\begin{gathered}
F_{X_{1} \times X_{2}}=F_{X_{1}} \times F_{X_{2}} \\
f_{X_{1} \times X_{2}}(x)=F_{X_{1}}(x) \times f_{X_{2}}(x)+f_{X_{1}}(x) \times F_{X_{2}}(x)
\end{gathered}
$$

Exact results on series-parallel graphs.
Dodin algorithm on general graphs [Op. Research, 1985]
Approximation by a series-parallel graph.

Approximation with normality assumption

Clark's formula on two dependent normal laws:

$$
X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right) \quad X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)
$$

Approximation of the Sum and Max by a normal law.

- Sum of corollated normal laws: $X_{3}=X_{1}+X_{2}$
- Expected value: $\mu_{3}=\mu_{1}+\mu_{2}$
- Variance: $\sigma_{3}^{2}=\sigma_{1}^{2}+2 . \sigma_{1}^{2} \cdot \sigma_{2}^{2} \cdot \rho_{X_{1}, X_{2}}+\sigma_{2}^{2}$
- Correlation coefficient: closed formula
- Max of corollated normal laws: $X_{3}=X_{1} \times X_{2}$
- (Complicated) closed formulas

Normal approximation on general graphs [Op. Research, 1983]
Consider that every random variable is normally distributed.

Outline

2 Approximation for expected longest path

3 First order approximation for silent errors
(4) Experiments
(5) Conclusion

Silent errors

- Silent Data Corruptions
\hookrightarrow major challenges for Exascale
\hookrightarrow cosmic radiations
\hookrightarrow packaging pollution
\hookrightarrow Dynamic Voltage Frequency Scaling
- Verification at the end of task \hookrightarrow checksums (linear algebra kernels)
- Errors are independent and exponentially distributed \hookrightarrow Mean Time Between Failure: $1 / \lambda$

First order approximation

- Probability that an error occurs during the first execution of task i :

$$
1-e^{-\lambda a_{i}}=\lambda a_{i}+O\left(\lambda^{2}\right)
$$

- Probability that an error occurs during the first and the second execution of task i :

$$
\left(1-e^{-\lambda a_{i}}\right)^{2}=O\left(\lambda^{2}\right)
$$

- λ is small \Rightarrow first order approximation

Model with first order approximation

For every task i :

$$
X_{i}=\left\{\begin{array}{lll}
a_{i} & \text { with probability } & 1-\lambda a_{i} \\
2 . a_{i} & \text { with probability } & \lambda a_{i}
\end{array}\right.
$$

Model with first order approximation

For every task i :

$$
X_{i}= \begin{cases}a_{i} & \text { with probability } \\ 2 . a_{i} & \text { with probability } \\ \lambda a_{i}\end{cases}
$$

Theorem

Computing the expected longest path of a probabilistic 2-state DAG is a \#P-complete problem.

$\mathcal{E}(G)$: expected longest path of G

- $\mathcal{E}(G)$ is a polynomial in λ
- $\mathcal{E}(G)=L(G)+\lambda \sum_{i \in V} a_{i}\left(L\left(G_{i}\right)-L(G)\right)+O\left(\lambda^{2}\right)$
where $L(G)$: deterministic longest path in G

$L\left(G_{i}\right)$: deterministic longest path in G when task i has weight $2 . a_{i}$

- First order approximation:

$$
\mathcal{E}(G)=L(G)+\lambda \sum_{i \in V} a_{i}\left(L\left(G_{i}\right)-L(G)\right)
$$

$\hookrightarrow(n+1)$ Deap-first search: $O\left(|V|^{2}+|V| \cdot|E|\right)$

Outline

2 Approximation for expected longest path

3 First order approximation for silent errors
(4) Experiments
(5) Conclusion

Experiments

- Evaluation of:
\hookrightarrow First order approximation
\hookrightarrow Approximation by a series-parallel graph
\hookrightarrow Approximation with normality assumption

- Comparison with Monte-Carlo approach $\hookrightarrow 300,000$ iterations
- DAGs from tiled Cholesky, LU and QR factorizations \hookrightarrow kernels execution times from StarPU

Results for QR factorization

$\lambda=0.001$

$$
\lambda=0.1
$$

$\lambda=0.01$

Results for LU factorization

$\lambda=0.001$

$$
\lambda=0.1
$$

$\lambda=0.01$

Outline

2 Approximation for expected longest path

3 First order approximation for silent errors
4. Experiments
(5) Conclusion

Conclusion

First order approximation

- First order approximation of expected longest path with silent errors
- Lower complexity than existing methods
- Better results for small (but realistic) failure rate

Perspective

- Expected makespan for limited resources
- Introduction of checkpoints

