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Motivation

Why do we need to compute longest paths in graphs?

HPC applications seen as a computational workflow:
↪→ Vertices: tasks with execution time xi ∈ R+

↪→ Edges: data dependencies

List scheduling:
↪→ Critical Path Scheduling (based on bottom-level)
↪→ HEFT algorithm (for heterogeneous environments)
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Motivation

Longest path:

L = X6 +max(X5 +max(X2, X3),

X4 +X2)

+X1

Deterministic weights:
↪→ Deap-first search: O(|V |+ |E|)
Random weights (PERT networks):
↪→ L is a random variable
↪→ Computing L’s distribution: #P-complete
↪→ Computing L’s expected value: #P-complete
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Monte-Carlo approach

For each task: weight is
sampled from its probability
distribution:

xi ← Xi

Longest path is computed:

L(x1, x2, ..., xn)

Repeat a large number of
iteration

↪→ gives an empirical expected value
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Approximation by a series-parallel graph

We deal with independent variables!
X1 +X2: convolution of density functions

fX1+X2(x) =

∫
t
fX1(t)fX2(x− t)dt

max(X1, X2): product of cumulative functions

FX1×X2 = FX1 × FX2

fX1×X2(x) = FX1(x)× fX2(x) + fX1(x)× FX2(x)

Exact results on series-parallel graphs.

Dodin algorithm on general graphs [Op. Research, 1985]
Approximation by a series-parallel graph.
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Approximation with normality assumption

Clark’s formula on two dependent normal laws:

X1 ∼ N (µ1, σ
2
1) X2 ∼ N (µ2, σ

2
2)

Approximation of the Sum and Max by a normal law.

Sum of corollated normal laws: X3 = X1 +X2

Expected value: µ3 = µ1 + µ2

Variance: σ2
3 = σ2

1 + 2.σ2
1 .σ

2
2 .ρX1,X2

+ σ2
2

Correlation coefficient: closed formula

Max of corollated normal laws: X3 = X1 ×X2

(Complicated) closed formulas

Normal approximation on general graphs [Op. Research, 1983]

Consider that every random variable is normally distributed.
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Silent errors

Silent Data Corruptions
↪→ major challenges for Exascale
↪→ cosmic radiations
↪→ packaging pollution
↪→ Dynamic Voltage Frequency Scaling

Verification at the end of task
↪→ checksums (linear algebra kernels)

Errors are independent and exponentially distributed
↪→ Mean Time Between Failure: 1/λ
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First order approximation

Probability that an error occurs during the first execution of
task i:

1− e−λai = λai +O(λ2)

Probability that an error occurs during the first and the
second execution of task i:

(1− e−λai)2 = O(λ2)

λ is small⇒ first order approximation

Model with first order approximation
For every task i :

Xi =

{
ai with probability 1− λai
2.ai with probability λai
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Model with first order approximation
For every task i :

Xi =

{
ai with probability 1− λai
2.ai with probability λai

Theorem
Computing the expected longest path of a probabilistic
2-state DAG is a #P-complete problem.
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E(G): expected longest path of G

E(G) is a polynomial in λ

E(G) = L(G) + λ
∑

i∈V ai(L(Gi)− L(G)) +O(λ2)

where L(G) : deterministic longest path in G

L(Gi) : deterministic longest path in G
when task i has weight 2.ai

First order approximation:

E(G) = L(G) + λ
∑
i∈V

ai(L(Gi)− L(G))

↪→ (n+ 1) Deap-first search: O(|V |2 + |V |.|E|)
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Experiments

Evaluation of:
↪→ First order approximation
↪→ Approximation by a
series-parallel graph
↪→ Approximation with normality
assumption
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Comparison with Monte-Carlo approach
↪→ 300,000 iterations

DAGs from tiled Cholesky, LU and QR factorizations
↪→ kernels execution times from StarPU
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Results for QR factorization
λ = 0.001 λ = 0.01
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Results for LU factorization
λ = 0.001 λ = 0.01
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Conclusion

First order approximation
First order approximation of expected longest path with
silent errors
Lower complexity than existing methods
Better results for small (but realistic) failure rate

Perspective
Expected makespan for limited resources
Introduction of checkpoints
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