Computing the expected longest path of task graphs in the presence of silent errors

Henri Casanova, Julien Herrmann, Yves Robert

Nashville - May 19, 2015

< 同 > < 三 > < 三 >

- 2 Approximation for expected longest path
- 8 First order approximation for silent errors

4 Experiments

- Approximation for expected longest path
- First order approximation for silent errors

4 Experiments

5 Conclusion

Motivation

Why do we need to compute longest paths in graphs?

- HPC applications seen as a computational workflow: \hookrightarrow Vertices: tasks with execution time $\mathbf{x_i} \in \mathbb{R}^+$
 - \hookrightarrow Edges: data dependencies

- List scheduling:
 - \hookrightarrow Critical Path Scheduling (based on bottom-level)
 - \hookrightarrow HEFT algorithm (for heterogeneous environments)

Motivation

Longest path:

$$L = X_6 + max(X_5 + max(X_2, X_3)),$$
$$X_4 + X_2)$$
$$+ X_1$$

Deterministic weights:

 \hookrightarrow Deap-first search: O(|V| + |E|)

- Random weights (PERT networks):
 - $\hookrightarrow L$ is a random variable
 - \hookrightarrow Computing *L*'s distribution: **#P**-complete
 - \hookrightarrow Computing L's expected value: #P-complete

Motivation

2 Approximation for expected longest path

3 First order approximation for silent errors

4 Experiments

5 Conclusion

<ロ> < 回 > < 回 > < 回 > < 回 >

Monte-Carlo approach

• For each task: weight is **sampled** from its probability distribution:

 $x_i \leftarrow X_i$

• Longest path is computed:

 $L(x_1, x_2, ..., x_n)$

 Repeat a large number of iteration

 \hookrightarrow gives an empirical expected value

Approximation by a series-parallel graph

We deal with independent variables!

• $X_1 + X_2$: convolution of density functions

$$f_{X_1+X_2}(x) = \int_t f_{X_1}(t) f_{X_2}(x-t) dt$$

• $max(X_1, X_2)$: product of cumulative functions

$$F_{X_1 \times X_2} = F_{X_1} \times F_{X_2}$$

$$f_{X_1 \times X_2}(x) = F_{X_1}(x) \times f_{X_2}(x) + f_{X_1}(x) \times F_{X_2}(x)$$

Exact results on series-parallel graphs.

Dodin algorithm on general graphs [Op. Research, 1985] Approximation by a series-parallel graph.

Approximation with normality assumption

Clark's formula on two dependent normal laws:

$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$$
 $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

Approximation of the Sum and Max by a normal law.

- Sum of corollated normal laws: $X_3 = X_1 + X_2$
 - Expected value: $\mu_3 = \mu_1 + \mu_2$
 - Variance: $\sigma_3^2 = \sigma_1^2 + 2.\sigma_1^2.\sigma_2^2.\rho_{X_1,X_2} + \sigma_2^2$
 - Correlation coefficient: closed formula
- Max of corollated normal laws: $X_3 = X_1 \times X_2$
 - (Complicated) closed formulas

Normal approximation on general graphs [Op. Research, 1983] Consider that every random variable is normally distributed.

ヘロト ヘヨト ヘヨト

Motivation

Approximation for expected longest path

First order approximation for silent errors

4 Experiments

5 Conclusion

Silent errors

- Silent Data Corruptions
 - \hookrightarrow major challenges for Exascale
 - $\hookrightarrow \text{cosmic radiations}$
 - $\hookrightarrow \text{packaging pollution}$
 - \hookrightarrow Dynamic Voltage Frequency Scaling
- Verification at the end of task

 → checksums (linear algebra kernels)
- Errors are independent and exponentially distributed \hookrightarrow Mean Time Between Failure: $1/\lambda$

First order approximation

 Probability that an error occurs during the first execution of task i:

$$1 - e^{-\lambda a_i} = \lambda a_i + O(\lambda^2)$$

 Probability that an error occurs during the first and the second execution of task i:

$$(1 - e^{-\lambda a_i})^2 = O(\lambda^2)$$

• λ is small \Rightarrow first order approximation

Model with first order approximation

For every task *i* :

$$X_i = \begin{cases} a_i & \text{with probability } 1 - \lambda a_i \\ 2.a_i & \text{with probability } \lambda a_i \end{cases}$$

Model with first order approximation

For every task *i* :

$$X_i = \begin{cases} a_i & \text{with probability} \quad 1 - \lambda a \\ 2.a_i & \text{with probability} \quad \lambda a_i \end{cases}$$

Theorem

Computing the expected longest path of a **probabilistic 2-state DAG** is a **#P-complete** problem.

A (10) A (10)

 $\mathcal{E}(G)$: expected longest path of G

• $\mathcal{E}(G)$ is a **polynomial** in λ

•
$$\mathcal{E}(G) = L(G) + \lambda \sum_{i \in V} a_i(L(G_i) - L(G)) + O(\lambda^2)$$

where L(G): deterministic longest path in G

- $L(G_i)$: deterministic longest path in Gwhen task *i* has weight $2.a_i$
- First order approximation:

$$\mathcal{E}(G) = L(G) + \lambda \sum_{i \in V} a_i (L(G_i) - L(G))$$

 $\hookrightarrow (n+1)$ Deap-first search: $O(|V|^2 + |V|.|E|)$

Motivation

Approximation for expected longest path

3 First order approximation for silent errors

4 Experiments

5 Conclusion

Experiments

 Evaluation of:
 → First order approximation
 → Approximation by a series-parallel graph
 → Approximation with normality assumption

- Comparison with Monte-Carlo approach
 → 300,000 iterations
- DAGs from tiled Cholesky, LU and QR factorizations
 → kernels execution times from StarPU

Results for QR factorization

 $\lambda = 0.1$

Results for LU factorization

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- 王

 $\lambda = 0.1$

Motivation

Approximation for expected longest path

3 First order approximation for silent errors

4 Experiments

Conclusion

First order approximation

- First order approximation of expected longest path with silent errors
- Lower complexity than existing methods
- Better results for small (but realistic) failure rate

Perspective

- Expected makespan for limited resources
- Introduction of checkpoints

A (10) + A (10) +