Scheduling Series-Parallel Graphs of Malleable Tasks

Loris Marchal¹ Bertrand Simon¹ Oliver Sinnen² Frédéric Vivien¹

1: CNRS, INRIA, ENS Lyon and Univ. Lyon, FR. 2: Univ. Auckland, NZ.

11th Scheduling for Large Scale Systems Workshop

May 20, 2016

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan

Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)

Each task is itself a parallel task

Behavior of tasks

parallel and malleable (processor allotment can change during task execution)

speed-up(p) = $\frac{time(1 \text{ proc.})}{time(p \text{ proc.})}$ | work(p) = p · time(p proc.)

- ► Speed-up model → trade-off between:
 - Accuracy: fits well the data
 - Tractability: amenable to perf. analysis, guaranteed algorithms
 - Perfectly-parallel tasks: schedule each task on the whole platform, same problem than scheduling sequential tasks on a single processor

Literature: studies with few assumptions

Non-increasing speed-up and work

- Independent tasks: theoretical FPTAS and practical 2-approximations [Jansen 2004, Fan et al. 2012]
- SP-graphs: ≈ 2.6-approximation [Lepère et al. 2001] with concave speed-up: (2 + ε)-approximation of unspecified complexity [Makarychev et al. 2014]

Previous work (Europar 2015, with Abdou Guermouche)

Prasanna & Musicus model [PM 1996]

• speed-up(p) =
$$p^{\alpha}$$
, with $0 < \alpha \leq 1$

► Task T_i of size L_i Processing time of T_i : = arg min $\left\{ \int_0^C p_i(t)^\alpha dt \ge L_i \right\}$

Theorem (Prasanna & Musicus)

In optimal schedules, at any parallel node $G_1 \parallel G_2$, the ratio of processors given to each branch is constant.

Corollary

- In optimal schedules:
 - $\forall i, p_i(t)/p(t)$ is constant
 - Children of a node terminate simultaneously
- $G \approx$ equivalent task T_G of length \mathcal{L}_G defined by:

•
$$\mathcal{L}_{T_i} = L_i$$

•
$$\mathcal{L}_{G_1:G_2} = \mathcal{L}_{G_1} + \mathcal{L}_{G_2}$$

• $\mathcal{L}_{G_1 \parallel G_2} = \left(\mathcal{L}_{G_1}^{1/\alpha} + \mathcal{L}_{G_2}^{1/\alpha}\right)^c$

► The (unique) optimal schedule S_{PM} can be computed in polynomial time.

Previous work (Europar 2015, with Abdou Guermouche)

Prasanna & Musicus model [PM 1996]: speed-up(p) = p^{α}

Conclusions:

- Optimal algorithm for SP-graphs
- Average Accuracy 😑
- Rational numbers of processors (3)
- No guarantees for distributed platforms

Question: should we allow allotments of rational number of cores to tasks, or keep to integral ones?

Question: should we allow allotments of rational number of cores to tasks, or keep to integral ones?

Answer: for malleable tasks, rational allotments do not lead to any improvement.

Question: should we allow allotments of rational number of cores to tasks, or keep to integral ones?

Answer: for malleable tasks, rational allotments do not lead to any improvement.

Question: should we allow allotments of rational number of cores to tasks, or keep to integral ones?

Answer: for malleable tasks, rational allotments do not lead to any improvement.

Question: should we allow allotments of rational number of cores to tasks, or keep to integral ones?

Answer: for malleable tasks, rational allotments do not lead to any improvement.

Question: should we allow allotments of rational number of cores to tasks, or keep to integral ones?

Answer: for malleable tasks, rational allotments do not lead to any improvement.

Question: should we allow allotments of rational number of cores to tasks, or keep to integral ones?

Answer: for malleable tasks, rational allotments do not lead to any improvement.

Question: should we allow allotments of rational number of cores to tasks, or keep to integral ones?

Answer: for malleable tasks, rational allotments do not lead to any improvement.

Question: should we allow allotments of rational number of cores to tasks, or keep to integral ones?

Answer: for malleable tasks, rational allotments do not lead to any improvement.

Today: simpler model

Simple and reasonable model of a parallel malleable task T_i

• Perfect parallelism up to a threshold δ_i : time = $w_i / \min(p, \delta_i)$

Today: simpler model

Simple and reasonable model of a parallel malleable task T_i

• Perfect parallelism up to a threshold δ_i : time = $w_i / \min(p, \delta_i)$

Related studies

- ▶ 2-approximation [Balmin et al. 13] that we will discuss
- ▶ [Kell et al. 2015] : $time = \frac{w_i}{p} + (p-1)c$; 2-approximation for p = 3, open for $p \ge 4$

Outline

Problem complexity

- 2 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]
- Oesign of a greedy strategy
- 4 Experimental comparison
- 5 Conclusion

Given a SP-graph, p processors: compute the optimal makespan

• Problem known as $P|sp-graph, any, spdp-lin, \delta_i|C_{max}$

Contribution

Given a SP-graph, p processors: compute the optimal makespan

 \implies P \cong

- Problem known as $P|sp-graph, any, spdp-lin, \delta_i|C_{max}$
- Malleability + perfect parallelism

Contribution

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp-graph, any, spdp-lin, \delta_i|C_{max}$
- Malleability + perfect parallelism
- $\implies P \textcircled{\begin{tabular}{l}} + \text{thresholds} \implies \text{NP-complete} \textcircled{\begin{tabular}{l}} \\ \blacksquare \end{array}$

Contribution

Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp-graph, any, spdp-lin, \delta_i|C_{max}$
- Malleability + perfect parallelism \implies P $\textcircled{\sc e}$
- Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution

Widget for the proof

min. computing time of 1

Simultaneous start: $C_{max} \approx 5$

Each task:

- $\triangleright \delta_i = w_i$
- min. computing time of 1

Simultaneous start: $C_{max} \approx 5$

Proof sketch

Reduction from 3-SAT (ex: $x_1 \ OR \ x_2 \ OR \ \overline{x}_2$)

▶ Idea: each variable \Rightarrow a modified widget (a chain for both x_i , \overline{x}_i)

Proportional Mapping

Proof sketch

Reduction from 3-SAT (ex: $x_1 OR x_2 OR \overline{x}_2$)

- ▶ Idea: each variable \Rightarrow a modified widget (a chain for both x_i , \overline{x}_i)
- extremities \Rightarrow variables middle \Rightarrow clauses

Proportional Mapping

Proof sketch

Reduction from 3-SAT (ex: $x_1 OR x_2 OR \overline{x}_2$)

- ▶ Idea: each variable \Rightarrow a modified widget (a chain for both x_i , \overline{x}_i)
- extremities \Rightarrow variables middle \Rightarrow clauses
- ▶ The one starting later: TRUE

Proportional Mapping

Proof sketch

Reduction from 3-SAT (ex: $x_1 OR x_2 OR \overline{x}_2$)

- ▶ Idea: each variable \Rightarrow a modified widget (a chain for both x_i , \overline{x}_i)
- extremities \Rightarrow variables middle \Rightarrow clauses
- ▶ The one starting later: TRUE
- Gray chain: profile allowing only correct behaviors

Problem complexity

2 Analysis of **PROPORTIONALMAPPING** [Pothen et al. 1993]

Oesign of a greedy strategy

4 Experimental comparison

5 Conclusion

PROPORTIONALMAPPING [Pothen et al. 1993]

Description

- Simple allocation for trees or SP-graphs
- On $G_1 \parallel G_2$: constant share to G_i , proportional to its weight W_i

Algorithm 1: PROPORTIONAL MAPPING (graph G, q procs)

1 Define the share allocated to sub-graphs of G:

if $G = G_1; G_2; \ldots G_k$ then $\downarrow \forall i, p_i \leftarrow q$

- 2 Call PROPORTIONALMAPPING (G_i , p_i) for each sub-graph G_i
- Then schedule tasks on p_i processors ASAP

Notes

- Produces a moldable schedule (fixed allocation over time)
- Unaware of task thresholds

Theorem

PROPORTIONALMAPPING *is a 2-approximation of the optimal makespan.*

Proof.

- ▶ Consider makespan without thresholds: $M_{\infty} \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:

Note

Theorem

PROPORTIONALMAPPING *is a 2-approximation of the optimal makespan.*

Proof.

- ▶ Consider makespan without thresholds: $M_{\infty} \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = tasks limited by their thresholds: $len(A) \leq \text{critical path} \leq M_{\text{opt}}$

Note

Theorem

PROPORTIONALMAPPING *is a 2-approximation of the optimal makespan.*

Proof.

- ▶ Consider makespan without thresholds: $M_{\infty} \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = tasks limited by their thresholds: $len(A) \leq \text{critical path} \leq M_{\text{opt}}$
 - B = tasks limited by the allocation: $\mathit{len}(B) \leq M_\infty \leq M_{opt}$

Note

Theorem

PROPORTIONALMAPPING *is a 2-approximation of the optimal makespan.*

Proof.

- ▶ Consider makespan without thresholds: $M_{\infty} \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - A = tasks limited by their thresholds: $len(A) \leq \text{critical path} \leq M_{\text{opt}}$
 - B = tasks limited by the allocation: $\mathit{len}(B) \leq M_\infty \leq M_{opt}$
- Finally, $M = len(\Phi) = len(A) + len(B) \le 2M_{opt}$

Note

Problem complexity

2 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

Oesign of a greedy strategy

4 Experimental comparison

5 Conclusion

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- Greedily insert each task in the current schedule:

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- Greedily insert each task in the current schedule:
 - Compute earliest starting time

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- Greedily insert each task in the current schedule:
 - Compute earliest starting time

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- Greedily insert each task in the current schedule:
 - Compute earliest starting time
 - Pour task into the available processor space, respecting thresholds

Analysis of GREEDY-FILLING schedules

Theorem

GREEDY-FILLING is a $2 - \frac{\delta_{\min}}{p}$ approximation to the optimal makespan.

Proof.

Transposition of the classical $\left(2-\frac{1}{p}\right)$ -approximation result by Graham

- Construct a path Φ in G: all idle times happen during tasks of Φ
- ▶ Bound Used and Idle areas (Used + Idle = p M)
 - At least δ_{\min} processors busy during Φ

Note

Theorem applies to every strategy without deliberate idle time

Outline

Problem complexity

2 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

Oesign of a greedy strategy

Experimental comparison

5 Conclusion

Simulations: a third algorithm to compare to

FLOWFLEX

- 2-approximation designed in [Balmin et al. 13] to schedule
 "Malleable Flows of MapReduce Jobs"
- Solve the problem on an infinite number of processors
- On each interval with constant allocations, if total allocation exceeds the number of available processors, downscale allocations proportionally

Simulations: three datasets

- SYNTH-PROP: Synthetic SP-graphs with $\delta_i = \alpha \times w_i$,
- SYNTH-RAND: Same but with a factor log-uniform in [0.1α, 10α],
- TREES: Assembly trees of sparse matrices, $\delta_i = \alpha \times w_i$.

Results on SYNTH-PROP

- > Y: Makespan normalized by the lower bound $LB = \max(CP, \frac{W}{p})$
- > X: Number of processors normalized by:

$$parallelism = rac{\mathsf{makespan with all } \delta_i = 1 ext{ and } p = \infty}{\mathsf{makespan with all } \delta_i = 1 ext{ and } p = 1}$$

Results on SYNTH-PROP

- Plot: mean + ribbon with 90% of the results
- Small/large number of processors: similar results (simpler problem)
- ► GREEDY-FILLING:
- $\bullet~\approx 25\%$ of gain
- $\bullet~<20\%$ from the lower bound

Results on SYNTH-RAND

- Similar results with random thresholds
- \blacktriangleright Larger gaps between $\operatorname{GREEDY-FILLING}$ and the others
- Maximum gap happens for smaller platforms

Results on TREES

- Shape of the results depends a lot on the matrix
- Here: one matrix with different ordering and amalgamation parameters
- ▶ GREEDY-FILLING (almost always) better than both others
- Smaller maximum gain (around 15%)

Outline

Problem complexity

2 Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

Oesign of a greedy strategy

4 Experimental comparison

On the algorithms

- ▶ PROPMAPPING: does not take advantage of malleability
- ▶ FLOWFLEX: produces gaps that cannot be filled afterwards
- ▶ GREEDY-FILLING: simple, greedy, close to the lower bound

On the algorithms

- ▶ PROPMAPPING: does not take advantage of malleability
- ▶ FLOWFLEX: produces gaps that cannot be filled afterwards
- \blacktriangleright GREEDY-FILLING: simple, greedy, close to the lower bound

On the model

- Simplest model to account for limited parallelism
- Still NP-complete
- Possible to derive theoretical guarantees (2-approx. algorithms) ©

Model extension

Model extension

Previous model:

Two phases: perfect parallelism or constant speed-up New model:

Additional phases, phase *i* with speed-up(p) = $\alpha_i \cdot p$

