
Scheduling Series-Parallel Graphs
of Malleable Tasks

Loris Marchal1 Bertrand Simon1 Oliver Sinnen2

Frédéric Vivien1

1: CNRS, INRIA, ENS Lyon and Univ. Lyon, FR.
2: Univ. Auckland, NZ.

11th Scheduling for Large Scale Systems Workshop

May 20, 2016

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 1 / 29

Motivation

Context:
I Optimize the time performance of multifrontal sparse solvers

(e.g., MUMPS or QR-MUMPS)
I Computations well described by a tree of tasks
I Generalization to Series-Parallel graphs
I Purpose: find a schedule achieving the shortest makespan

T

T

Objectives:
I Provide theoretical guarantees on widely used scheduling algorithms
I Design algorithms with shorter makespan

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 2 / 29

Motivation

Context:
I Optimize the time performance of multifrontal sparse solvers

(e.g., MUMPS or QR-MUMPS)
I Computations well described by a tree of tasks
I Generalization to Series-Parallel graphs
I Purpose: find a schedule achieving the shortest makespan

G1 G2

G1;G2

Objectives:
I Provide theoretical guarantees on widely used scheduling algorithms
I Design algorithms with shorter makespan

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 2 / 29

Motivation

Context:
I Optimize the time performance of multifrontal sparse solvers

(e.g., MUMPS or QR-MUMPS)
I Computations well described by a tree of tasks
I Generalization to Series-Parallel graphs
I Purpose: find a schedule achieving the shortest makespan

G1

G2 G1 ‖ G2

Objectives:
I Provide theoretical guarantees on widely used scheduling algorithms
I Design algorithms with shorter makespan

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 2 / 29

Motivation

Context:
I Optimize the time performance of multifrontal sparse solvers

(e.g., MUMPS or QR-MUMPS)
I Computations well described by a tree of tasks
I Generalization to Series-Parallel graphs
I Purpose: find a schedule achieving the shortest makespan

Objectives:
I Provide theoretical guarantees on widely used scheduling algorithms
I Design algorithms with shorter makespan

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 2 / 29

Motivation

Context:
I Optimize the time performance of multifrontal sparse solvers

(e.g., MUMPS or QR-MUMPS)
I Computations well described by a tree of tasks
I Generalization to Series-Parallel graphs
I Purpose: find a schedule achieving the shortest makespan

1

2

4 65 3

Objectives:
I Provide theoretical guarantees on widely used scheduling algorithms
I Design algorithms with shorter makespan

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 2 / 29

Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)
I Each task is itself a parallel task

Behavior of tasks
I parallel and malleable

(processor allotment can change during task execution)

speed-up(p) = time(1 proc.)
time(p proc.)

∣∣∣ work(p) = p · time(p proc.)

I Speed-up model −→ trade-off between:
Accuracy: fits well the data
Tractability: amenable to perf. analysis, guaranteed algorithms
Perfectly-parallel tasks: schedule each task on the whole platform,
same problem than scheduling sequential tasks on a single processor

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 3 / 29

General speed-up models

Literature: studies with few assumptions

Non-increasing speed-up and work
I Independent tasks: theoretical FPTAS and practical

2-approximations [Jansen 2004, Fan et al. 2012]

I SP-graphs: ≈ 2.6-approximation [Lepère et al. 2001]
with concave speed-up: (2 + ε)-approximation of unspecified
complexity [Makarychev et al. 2014]

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 4 / 29

Previous work (Europar 2015, with Abdou Guermouche)

Prasanna & Musicus model [PM 1996]
I speed-up(p) = pα, with 0 < α ≤ 1

1

1

speed-up

processors

α = 1
perfect parallelism

0 < α < 1

α = 0
no parallelism

I Task Ti of size Li

Processing time of Ti : = argmin
C

{∫ C

0
pi (t)α dt ≥ Li

}

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 5 / 29

Results for Prasanna & Musicus’ model

Theorem (Prasanna & Musicus)
In optimal schedules, at any parallel node G1 ‖G2, the ratio of processors
given to each branch is constant.

Corollary
I In optimal schedules:

∀i , pi (t)/p(t) is constant
Children of a node terminate simultaneously

I G ≈ equivalent task TG of length LG defined by:
LTi = Li
LG1 ; G2 = LG1 + LG2

LG1 ‖ G2 =
(
L1/α

G1
+ L1/α

G2

)α
I The (unique) optimal schedule SPM can be computed in polynomial

time.

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 6 / 29

Previous work (Europar 2015, with Abdou Guermouche)

Prasanna & Musicus model [PM 1996]: speed-up(p) = pα

1

1

speed-up

processors

α = 1
perfect parallelism

0 < α < 1

α = 0
no parallelism

Conclusions:

I Optimal algorithm for SP-graphs
I Average Accuracy
I Rational numbers of processors

I Task finish times complex
to compute

I No guarantees for
distributed platforms

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 7 / 29

Integer or rational allotments?

Question: should we allow allotments of rational number of cores to
tasks, or keep to integral ones?

Answer: for malleable tasks, rational allotments do not lead to any
improvement.
McNaughton rule

procs

1.4

3.2
4

time2

procs

1

2

3

4

time

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 8 / 29

Integer or rational allotments?

Question: should we allow allotments of rational number of cores to
tasks, or keep to integral ones?
Answer: for malleable tasks, rational allotments do not lead to any
improvement.
McNaughton rule

procs

1.4

3.2
4

time2

procs

1

2

3

4

time

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 8 / 29

Integer or rational allotments?

Question: should we allow allotments of rational number of cores to
tasks, or keep to integral ones?
Answer: for malleable tasks, rational allotments do not lead to any
improvement.
McNaughton rule

procs

1.4

3.2
4

time2

procs

1

2

3

4

time2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 8 / 29

Integer or rational allotments?

Question: should we allow allotments of rational number of cores to
tasks, or keep to integral ones?
Answer: for malleable tasks, rational allotments do not lead to any
improvement.
McNaughton rule

procs

1.4

3.2
4

time2

procs

1

2

3

4

time2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 8 / 29

Integer or rational allotments?

Question: should we allow allotments of rational number of cores to
tasks, or keep to integral ones?
Answer: for malleable tasks, rational allotments do not lead to any
improvement.
McNaughton rule

procs

1.4

3.2
4

time2

procs

1

2

3

4

time2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 8 / 29

Integer or rational allotments?

Question: should we allow allotments of rational number of cores to
tasks, or keep to integral ones?
Answer: for malleable tasks, rational allotments do not lead to any
improvement.
McNaughton rule

procs

1.4

3.2
4

time2

procs

1

2

3

4

time2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 8 / 29

Integer or rational allotments?

Question: should we allow allotments of rational number of cores to
tasks, or keep to integral ones?
Answer: for malleable tasks, rational allotments do not lead to any
improvement.
McNaughton rule

procs

1.4

3.2
4

time2

procs

1

2

3

4

time2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 8 / 29

Integer or rational allotments?

Question: should we allow allotments of rational number of cores to
tasks, or keep to integral ones?
Answer: for malleable tasks, rational allotments do not lead to any
improvement.
McNaughton rule

procs

1.4

3.2
4

time2

procs

1

2

3

4

time2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 8 / 29

Integer or rational allotments?

Question: should we allow allotments of rational number of cores to
tasks, or keep to integral ones?
Answer: for malleable tasks, rational allotments do not lead to any
improvement.
McNaughton rule

procs

1.4

3.2
4

time2

procs

1

2

3

4

time2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 8 / 29

Today: simpler model

Simple and reasonable model of a parallel malleable task Ti

I Perfect parallelism up to a threshold δi : time = wi /min(p, δi)

processors

speed-up

slo
pe

=
1

δi

Related studies
I 2-approximation [Balmin et al. 13] that we will discuss

I [Kell et al. 2015] : time = wi
p + (p − 1)c;

2-approximation for p = 3, open for p ≥ 4

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 9 / 29

Today: simpler model

Simple and reasonable model of a parallel malleable task Ti

I Perfect parallelism up to a threshold δi : time = wi /min(p, δi)

processors

speed-up

slo
pe

=
1

δi

Related studies
I 2-approximation [Balmin et al. 13] that we will discuss

I [Kell et al. 2015] : time = wi
p + (p − 1)c;

2-approximation for p = 3, open for p ≥ 4

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 9 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Outline

1 Problem complexity

2 Analysis of ProportionalMapping [Pothen et al. 1993]

3 Design of a greedy strategy

4 Experimental comparison

5 Conclusion

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 10 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan
I Problem known as P|sp-graph, any , spdp-lin, δi |Cmax

I Malleability + perfect parallelism =⇒ P
I . . . + thresholds =⇒ NP-complete
I Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution
I New NP-completeness proof

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 11 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan
I Problem known as P|sp-graph, any , spdp-lin, δi |Cmax

I Malleability + perfect parallelism =⇒ P

I . . . + thresholds =⇒ NP-complete
I Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution
I New NP-completeness proof

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 11 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan
I Problem known as P|sp-graph, any , spdp-lin, δi |Cmax

I Malleability + perfect parallelism =⇒ P
I . . . + thresholds =⇒ NP-complete

I Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution
I New NP-completeness proof

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 11 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan
I Problem known as P|sp-graph, any , spdp-lin, δi |Cmax

I Malleability + perfect parallelism =⇒ P
I . . . + thresholds =⇒ NP-complete
I Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution
I New NP-completeness proof

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 11 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Widget for the proof

Two 3-task chains

time

processors

area = wi

δi ≈ p

Each task:
I δi = wi

I min. computing time of 1

Simultaneous start: Cmax ≈ 5

p

Time-shift: Cmax ≈ 4

p

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 12 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Widget for the proof

Two 3-task chains

time

processors

area = wi

δi ≈ p

Each task:
I δi = wi

I min. computing time of 1

Simultaneous start: Cmax ≈ 5

p

Time-shift: Cmax ≈ 4

p

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 12 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Widget for the proof

Two 3-task chains

time

processors

area = wi

δi ≈ p

Each task:
I δi = wi

I min. computing time of 1

Simultaneous start: Cmax ≈ 5

p

Time-shift: Cmax ≈ 4

p

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 12 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Proof sketch

Reduction from 3-SAT (ex: x1 OR x2 OR x2)
I Idea: each variable ⇒ a modified widget (a chain for both xi , x i)

I extremities ⇒ variables — middle ⇒ clauses
I The one starting later: TRUE
I Gray chain: profile allowing only correct behaviors

time

processor usage

L0

Lx2

Lx2

Lx1

Lx1

t1 = 0 t2 M − t2 M − t1

Possible schedule for x1 OR x2 or x2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 13 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Proof sketch

Reduction from 3-SAT (ex: x1 OR x2 OR x2)
I Idea: each variable ⇒ a modified widget (a chain for both xi , x i)
I extremities ⇒ variables — middle ⇒ clauses

I The one starting later: TRUE
I Gray chain: profile allowing only correct behaviors

time

processor usage

L0

Lx2

Lx2

Lx1

Lx1

t1 = 0 t2 M − t2 M − t1

Possible schedule for x1 OR x2 or x2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 13 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Proof sketch

Reduction from 3-SAT (ex: x1 OR x2 OR x2)
I Idea: each variable ⇒ a modified widget (a chain for both xi , x i)
I extremities ⇒ variables — middle ⇒ clauses
I The one starting later: TRUE

I Gray chain: profile allowing only correct behaviors

time

processor usage

L0

Lx2

Lx2

Lx1

Lx1

t1 = 0 t2 M − t2 M − t1

Possible schedule for x1 OR x2 or x2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 13 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Proof sketch

Reduction from 3-SAT (ex: x1 OR x2 OR x2)
I Idea: each variable ⇒ a modified widget (a chain for both xi , x i)
I extremities ⇒ variables — middle ⇒ clauses
I The one starting later: TRUE
I Gray chain: profile allowing only correct behaviors

time

processor usage

L0

Lx2

Lx2

Lx1

Lx1

t1 = 0 t2 M − t2 M − t1

Possible schedule for x1 OR x2 or x2

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 13 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Outline

1 Problem complexity

2 Analysis of ProportionalMapping [Pothen et al. 1993]

3 Design of a greedy strategy

4 Experimental comparison

5 Conclusion

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 14 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

ProportionalMapping [Pothen et al. 1993]

Description
I Simple allocation for trees or SP-graphs
I On G1 ‖ G2: constant share to Gi , proportional to its weight Wi

Algorithm 1: ProportionalMapping (graph G , q procs)
1 Define the share allocated to sub-graphs of G :

if G = G1; G2; . . .Gk then
∀i , pi ← q

if G = G1 ‖ G2 ‖ . . .Gk
then
∀i , pi ← qWi/

∑
j Wj

2 Call ProportionalMapping (Gi , pi) for each sub-graph Gi

I Then schedule tasks on pi processors ASAP

Notes
I Produces a moldable schedule (fixed allocation over time)
I Unaware of task thresholds

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 15 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Analysis of ProportionalMapping schedules

Theorem
ProportionalMapping is a 2-approximation of the optimal makespan.

Proof.
I Consider makespan without thresholds: M∞ ≤ Mopt

I There is an idle-free path Φ from the entry task to the end
I Split the tasks of Φ in two sets:

A = tasks limited by their thresholds: len(A) ≤ critical path ≤ Mopt
B = tasks limited by the allocation: len(B) ≤ M∞ ≤ Mopt

I Finally, M = len(Φ) = len(A) + len(B) ≤ 2Mopt

Note
I Approximation ratio asymptotically tight

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 16 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Analysis of ProportionalMapping schedules

Theorem
ProportionalMapping is a 2-approximation of the optimal makespan.

Proof.
I Consider makespan without thresholds: M∞ ≤ Mopt

I There is an idle-free path Φ from the entry task to the end
I Split the tasks of Φ in two sets:

A = tasks limited by their thresholds: len(A) ≤ critical path ≤ Mopt

B = tasks limited by the allocation: len(B) ≤ M∞ ≤ Mopt

I Finally, M = len(Φ) = len(A) + len(B) ≤ 2Mopt

Note
I Approximation ratio asymptotically tight

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 16 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Analysis of ProportionalMapping schedules

Theorem
ProportionalMapping is a 2-approximation of the optimal makespan.

Proof.
I Consider makespan without thresholds: M∞ ≤ Mopt

I There is an idle-free path Φ from the entry task to the end
I Split the tasks of Φ in two sets:

A = tasks limited by their thresholds: len(A) ≤ critical path ≤ Mopt
B = tasks limited by the allocation: len(B) ≤ M∞ ≤ Mopt

I Finally, M = len(Φ) = len(A) + len(B) ≤ 2Mopt

Note
I Approximation ratio asymptotically tight

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 16 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Analysis of ProportionalMapping schedules

Theorem
ProportionalMapping is a 2-approximation of the optimal makespan.

Proof.
I Consider makespan without thresholds: M∞ ≤ Mopt

I There is an idle-free path Φ from the entry task to the end
I Split the tasks of Φ in two sets:

A = tasks limited by their thresholds: len(A) ≤ critical path ≤ Mopt
B = tasks limited by the allocation: len(B) ≤ M∞ ≤ Mopt

I Finally, M = len(Φ) = len(A) + len(B) ≤ 2Mopt

Note
I Approximation ratio asymptotically tight

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 16 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Outline

1 Problem complexity

2 Analysis of ProportionalMapping [Pothen et al. 1993]

3 Design of a greedy strategy

4 Experimental comparison

5 Conclusion

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 17 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Design of a greedy strategy: Greedy-Filling

Algorithm
I Assign priorities to tasks (usually by bottom-level)
I Consider free tasks by decreasing priority
I Greedily insert each task in the current schedule:

Compute earliest starting time
Pour task into the available processor space, respecting thresholds

Illustration

initial profile:

time

p

bu
sy

task insertion:

time

p

bu
sy

final profile:

time

p

bu
sy

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 18 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Design of a greedy strategy: Greedy-Filling

Algorithm
I Assign priorities to tasks (usually by bottom-level)
I Consider free tasks by decreasing priority
I Greedily insert each task in the current schedule:

Compute earliest starting time

Pour task into the available processor space, respecting thresholds

Illustration

initial profile:

time

p

bu
sy

task insertion:

time

p

bu
sy

final profile:

time

p

bu
sy

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 18 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Design of a greedy strategy: Greedy-Filling

Algorithm
I Assign priorities to tasks (usually by bottom-level)
I Consider free tasks by decreasing priority
I Greedily insert each task in the current schedule:

Compute earliest starting time

Pour task into the available processor space, respecting thresholds

Illustration

initial profile:

time

p

bu
sy

task insertion:

time

p

bu
sy

final profile:

time

p

bu
sy

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 18 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Design of a greedy strategy: Greedy-Filling

Algorithm
I Assign priorities to tasks (usually by bottom-level)
I Consider free tasks by decreasing priority
I Greedily insert each task in the current schedule:

Compute earliest starting time
Pour task into the available processor space, respecting thresholds

Illustration

initial profile:

time

p

bu
sy

task insertion:

time

p

bu
sy

ws
δs

final profile:

time

p

bu
sy

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 18 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Analysis of Greedy-Filling schedules

Theorem
Greedy-Filling is a 2− δmin

p approximation to the optimal makespan.

Proof.
Transposition of the classical (2− 1

p)-approximation result by Graham
I Construct a path Φ in G : all idle times happen during tasks of Φ
I Bound Used and Idle areas (Used + Idle = p M)

At least δmin processors busy during Φ

Note
I Theorem applies to every strategy without deliberate idle time

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 19 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Outline

1 Problem complexity

2 Analysis of ProportionalMapping [Pothen et al. 1993]

3 Design of a greedy strategy

4 Experimental comparison

5 Conclusion

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 20 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Simulations: a third algorithm to compare to

FlowFlex
I 2-approximation designed in [Balmin et al. 13] to schedule

“Malleable Flows of MapReduce Jobs”
I Solve the problem on an infinite number of processors
I On each interval with constant allocations, if total allocation

exceeds the number of available processors, downscale allocations
proportionally

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 21 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Simulations: three datasets

I SYNTH-PROP: Synthetic SP-graphs with δi = α× wi ,
I SYNTH-RAND: Same but with a factor log-uniform in

[0.1α, 10α],
I TREES: Assembly trees of sparse matrices, δi = α× wi .

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 22 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Results on SYNTH-PROP

1.0

1.1

1.2

1.3

1.4

0.0 2.5 5.0 7.5 10.0
Normalized number of processors

N
or
m
al
ize

d
m
ak
es
pa
n

Algorithm
Greedy-Filling
PropMapping
FlowFlex

I Y: Makespan normalized by the lower bound LB = max(CP, W
p)

I X: Number of processors normalized by:

parallelism = makespan with all δi = 1 and p =∞
makespan with all δi = 1 and p = 1

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 23 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Results on SYNTH-PROP

1.0

1.1

1.2

1.3

1.4

0.0 2.5 5.0 7.5 10.0
Normalized number of processors

N
or
m
al
ize

d
m
ak
es
pa
n

Algorithm
Greedy-Filling
PropMapping
FlowFlex

I Plot: mean + ribbon with 90% of the results
I Small/large number of processors: similar results (simpler problem)

I Greedy-Filling: ≈ 25% of gain
< 20% from the lower bound

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 23 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Results on SYNTH-RAND

1.0

1.2

1.4

0.0 2.5 5.0 7.5 10.0
Normalized number of processors

N
or
m
al
ize

d
m
ak
es
pa
n

Algorithm
Greedy-Filling
PropMapping
FlowFlex

I Similar results with random thresholds
I Larger gaps between Greedy-Filling and the others
I Maximum gap happens for smaller platforms

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 24 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Results on TREES

1.0

1.2

1.4

1.6

4 32 256 2048
Normalized number of processors

N
or
m
al
ize

d
m
ak
es
pa
n

Algorithm
Greedy-Filling
PropMapping
FlowFlex

I Shape of the results depends a lot on the matrix
I Here: one matrix with different ordering and amalgamation

parameters
I Greedy-Filling (almost always) better than both others
I Smaller maximum gain (around 15%)

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 25 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Outline

1 Problem complexity

2 Analysis of ProportionalMapping [Pothen et al. 1993]

3 Design of a greedy strategy

4 Experimental comparison

5 Conclusion

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 26 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Conclusion

On the algorithms
I PropMapping: does not take advantage of malleability
I FlowFlex: produces gaps that cannot be filled afterwards
I Greedy-Filling: simple, greedy, close to the lower bound

On the model
I Simplest model to account for limited parallelism
I Still NP-complete
I Possible to derive theoretical guarantees (2-approx. algorithms)

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 27 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Conclusion

On the algorithms
I PropMapping: does not take advantage of malleability
I FlowFlex: produces gaps that cannot be filled afterwards
I Greedy-Filling: simple, greedy, close to the lower bound

On the model
I Simplest model to account for limited parallelism
I Still NP-complete
I Possible to derive theoretical guarantees (2-approx. algorithms)

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 27 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Model extension

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 28 / 29

Problem complexity Proportional Mapping Greedy strategy Experimental comparison

Model extension
Previous model:

I Two phases: perfect parallelism or constant speed-up
New model:

I Additional phases, phase i with speed-up(p) = αi · p

processors

speed-up

slo
pe

=
1

slope =
1
2

δi

New approximation ratio: 1
mini αi

(
2− δmin

p

)
(Approximation ratio certainly false: PhD student on vacation and
had forgotten to commit new result in svn.)

L. Marchal, B. Simon, O. Sinnen, F. Vivien Scheduling Series-Parallel Graphs of Malleable Tasks 29 / 29

	Problem complexity
	Analysis of PropMapping [Pothen et al. 1993]
	Design of a greedy strategy
	Experimental comparison

