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Context

Cloud computing promises on demand resources

Different types of computing resources are available

Arbitrary speedups are in principle possible

The catch is that you have to pay for resources used

The problem becomes a tradeoff between the runtime of an
application and cost of executing it

In this presentation, we show that the pipelined dataflow abstraction is
good for expressing this tradeoff because runtime is “easy” to predict. We
use a particular imaging application to examplify the technique.
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Feature Extraction from Histopathological Slides

Biopsy slides
Non-blank patch
Preprocess

SuperPixel
segmentation

  

LBP feature
extraction

Varying sizes in the order of 100k × 100k pixels.

Aperio Format with thumbnail (about 1GB/file, 24GB uncompressed)
Available public repository (TCGA) with 1000s of participants
samples

3 slides per patients.

Can be used to predict whether the biopsy is cancerous

Will consider two instances: twoparticipants (2 participants) and
allslides (42 participants)
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Pipelined workflow

Layout

Image analysis

Reader Segmentation
LBP 

Features
Partitioner

Reader discards background tiles

Placement

Node 1 
1 CPU Core

Node 2
4 CPU Cores

Node 3
4 CPU Core + 1 

GPU

Node 0 
1 CPU Core

Advantages

Sequential processes

Heterogeneous

Replication for
throughput

Comm/Comp overlap

Application

Medical imaging

Stock option pricing

Synthetic Aperture
Radar

Incremental graph
algorithm
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How to predict runtime ?

In a pipelined system what matters is the steady state! The throughput is
given by the most loaded node.
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Runtime in a (simple) pipelined dataflow model

Model

An application of M stages

J identical jobs

Stage i processes a job in pi

One-to-one mapping

With one processor per stage

The execution is constrained
by the slowest stage

Period P = maxi pi

Throughput T = 1
P

S1

S2

S3

p1 P =P = p2 p3

JPP

JPP+(∑pi-PP)

2 4 6 8
time

1 3 5 7
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Runtime in a (more complex) pipelined dataflow model

Replication

It is possible in some application to
replicate some stages to increase
the throughput

If stage i is replicated ri times

i processes at a rate τi = ri
pi

Throughput T = maxiτi

Period P = 1
T

Heterogeneity

It is possible in some application to
replicate on different systems.

If stage i is replicated on a
CPU and a GPU

i processes at a rate
τi = 1

pcpui
+ 1

pgpui

Throughput T = maxiτi

Period P = 1
T

These two techniques combine !
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Experimental settings and model calibration

Machine

32-node cluster

Two Xeon E5520 (quad core)

An NVIDIA C2050

DDR4x Infiniband

Software

g++ 4.8.1

mvapich2 2.2

DataCutter (dcmpi)

Openslide 3.4.1

gSLIC

nvcc 7.0.27

Tile prediction

based on thumbnail:

0
50

100
150
200
250
300
350
400

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101 105 109

Tile
s

Slide Index

Total
Valid

Model Calibration
Estimated Estimated

Slide Filesize Width Height Total Tiles Valid Tiles

TCGA-BH-A18V-01A-01-TSA 432.93MB 98,631 33,244 225 78
TCGA-BH-A18J-01A-01-TSA 322.01MB 112,037 29,845 224 75

ImAn:
CPU / GPU Proc. Time Local τIA Average τIA Speedup

NVIDIA Tesla C2050 447.41 s 2.924M px/s
422.03 s 2.981M px/s 2.953M px/s 1

Intel Xeon E5520 (7 cores) 399.11 s 3.278M px/s
378.83 s 3.321M px/s 3.299M px/s 1.117
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A first log

Total Read
White

Valid Analyzed

MRT

MAT

0
200
400
600
800

1000
1200

0 50 100 150 200 250 300 350 400 450 500

Tile
s

Walltime (s)

1 Reader. 3 GPUs. Two Patients. Natural ordering.
(Eventually ImAn idles because too many White are read.)
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How to fix this ?

The Valid tiles are more computationally expensive than the White ones.
Valid first should work fine!
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Valid First does not always work

Total Read
White

Valid Analyzed

MRT MAT

0
2000
4000
6000
8000

10000
12000
14000
16000

0 2000 4000 6000 8000 10000

Tile
s

Walltime (s)

1 Reader. 2 GPUs. All Slides. Valid First.
(The system has bounded memory and eventually Reader stalls.)
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Flowshop

Deciding which job to process next in its simplest form is a Flowshop
problem.

Model

M stages

J jobs

job j in stage i takes time pi ,j

Order the job to minimize the
makespan

Bad News

NP-Complete in this form

That is actually an abstraction
of the real problem
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How to make the problem computationally simpler?

Since you have categories of jobs, the pi ,j matrix is actually low rank.
That helped in R||Cmax . Maybe it helps here?
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Interleave schedule

Insight

We have:

C categories of jobs

Jc jobs in category c

Jc are large numbers

Sounds like something cyclic
should work

Algorithm

Build k batches
with sc = Jc

k jobs of category c

Asymptotic optimality

Each batch can be seen as a meta
job in a one-to-one mapping.
When k goes to infinity, the
makespan of the flowshop problem
converges to the optimal value of
the pipelined scheduling problem.
So with lots of jobs, performance
is good.
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Dismissed Constraints

Divisibility

The number of jobs might be
prime, but rational approximation
works just fine.

Heterogeneity

Called hybrid problem in the
flowshop world.
Heterogeneous just makes different
pi ,j .

Onlineness

Non-clairvoyance can be solved
with random ordering.

Low-Rank

Categories and low-rank are
slightly different. (low rank admits
linear combination of categories.)
Low-rank can be solved by some
weighted interleave schedule

Communication

Often modeled as an additional
stage of processing.

Blocking Writes

As long as one batch does not
saturate memory, pipelining will
happen gracefully.
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In practice

Total Read
White

Valid Analyzed

MRT

MAT

0
2000
4000
6000
8000

10000
12000
14000
16000

0 2000 4000 6000 8000 10000

Tile
s

Walltime (s)

1 reader. 2 GPU. all slide. interleave.
(All cases work just fine.)
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Model

Time

Parameters:

W white tiles

V valid tiles

r CPU Reader at a rate τCPURead

c CPU ImAn at rate τCPUImAn

g GPU ImAn at rate τGPUImAn

Prediction:

τRead = rτCPURead

τImAn = cτCPUImAn + gτGPUImAn

Cmax = max(W+V
τRead

, V
τImAn

)

Cost

Amazon EC2 charges per hour
(MS Azure charges per minute)
So the charge is⌈
Cmax
3600

⌉
((r + c) ∗ Cc + g ∗ Cg )

What you can get

In EC2, you can get a cg1 instance
with 2 NVIDIA M2050 and 8 Xeon
core for $2.1 per hour.
For the reader, you can use a
c1.medium that gives a Xeon core
for $0.13 per hour.
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(1 + ε)-approximation of Time-Cost

Cost under time constraint

If you set a cap T on time, then
you obtain bounds

τRead ≥ W+V
Cmax

and τImAn ≥ V
Cmax

So:

rτ c1Read ≥
W+V
Cmax

r ≥ W+V
τ c1ReadCmax

and gτ cg1ImAn ≥
V

Cmax

g ≥ V
Cmaxτ

cg1
ImAn

Min cost: pick smallest r and g .

Pareto approximation

Using Papadimitriou and
Yannakakis scheme.
Pick Tmin and Tmax and a basis
1 + ε.
Return solution for
T = (1 + ε)kTmin for all

k ∈ N; 0 ≤ k ≤
⌈

log1+ε
Tmax
Tmin

⌉
That set is a (1 + ε) approximation
of the Pareto set.
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Some Values
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Conclusion

Predicting the runtime of pipelined dataflow application is feasible

Simple bottleneck analysis should work

Just make sure there are no artificial bubbles in the execution

Integrates heterogeneous processors gracefully

Time Cost tradeoff in the cloud

Once you have a closed formula for the runtime, picking the cheapest
machine to finish the application in a given time is easy

Finding an approximation of the Pareto-Curve is immediate

Erik Saule (UNC Charlotte) Time-Cost in Pipelined Applications Nashville 2016 24 / 26



Future Works

Does low-rank matrices make flowshop easier ?

Here it works becasue we have lots of jobs.
Even in the hybrid case ?

Dynamic pricing

Spot instances have varying price in time.
Can we do a similar analysis with dynamic pricing ?

Power and Energy

There are works in pipelined execution with energetic objective.
Can we leverage them in practice ?
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Thank you

More information

Contact : esaule@uncc.edu
Visit: http://webpages.uncc.edu/~esaule
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