# Doubly stochastic matrices \& solving sparse linear systems 

Bora Uçar<br>CNRS \& ENS Lyon, France

The 11th Scheduling For Large Scale Systems Workshop

From joint work with:

Michele Benzi
Emory Univ., US

Fanny Dufossé Inria, France

Kamer Kaya Sabancı Univ.,
Turkey

Alex Pothen Purdue Univ., US

## Context

## Sparse matrix

- A matrix with many zeros (which are not stored).
- Permutation matrix: An $n \times n$ matrix with exactly one 1 in each row and in each column (other entries are 0 )


## Bipartite graphs

- A bipartite graph
$G=(\mathcal{R} \cup \mathcal{C}, E)$ with $|\mathcal{R}|=m$ and $|\mathcal{C}|=n$.
- Perfect matching in $(\mathcal{R} \cup \mathcal{C}, E)$ : a set of $n$ edges no two share a common vertex.



## Context

$\mathbf{A} \Longleftrightarrow G_{\mathbf{A}}$ : edge between $r_{i}, c_{j}$ if $a_{i j} \neq 0 .(n \times n$ in this talk $)$.

## Total support

A has total support if every edge in $G_{A}$ is in a perfect matching.

A has total support if every nonzero in $\mathbf{A}$ is in a permutation matrix.


Our sample matrix does not have total support.


## Context

An $n \times n$ matrix $\mathbf{A}$ is doubly stochastic if $a_{i j} \geq 0$, and row sums and column sums are 1 .

A doubly stochastic matrix has total support.

## Birkhoff's Theorem: A is a doubly stochastic matrix

There exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in(0,1)$ with $\sum_{i=1}^{k} \alpha_{i}=1$ and permutation matrices $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{k}$ such that:

$$
\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}+\cdots+\alpha_{k} \mathbf{P}_{k} .
$$

- Also called Birkhoff-von Neumann (BvN) decomposition.
- Not unique, neither $k$, nor $\mathbf{P}_{i}$ s in general.


## Problem

Input: A doubly stochastic matrix A.
Output: A Birkhoff-von Neumann decomposition of $\mathbf{A}$ as $\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}+\cdots+\alpha_{k} \mathbf{P}_{k}$.
Measure: The number $k$ of permutation matrices in the decomposition.

We show that the problem is NP-hard.
We also propose a heuristic and investigate some its properties theoretically and experimentally.

## Motivation

Consider solving $\alpha \mathbf{P} x=b$ for $x$ where $\mathbf{P}$ is a permutation matrix.

$$
\alpha\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) \text { yields } \begin{aligned}
& x_{4}=b_{1} / \alpha \\
& x_{3}=b_{2} / \alpha \\
& x_{1}=b_{3} / \alpha \\
& x_{2}=b_{4} / \alpha
\end{aligned}
$$

We just scale the input and write at unique (permuted) positions in the output. Should be very efficient.

Next consider solving $\left(\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}\right) x=b$ for $x$.

## Motivation

Consider solving $\left(\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}\right) x=b$ for $x$.

## Matrix splitting and stationary iterations

for an invertible $\mathbf{A}=\mathbf{M}-\mathbf{N}$ with invertible $\mathbf{M}$

$$
x^{(i+1)}=\mathbf{H} x^{(i)}+c, \quad \text { where } \quad \mathbf{H}=\mathbf{M}^{-1} \mathbf{N} \text { and } c=\mathbf{M}^{-1} b
$$

where $k=0,1, \ldots$ and $x^{(0)}$ is arbitrary.

- Computation: At every step, multiply with $\mathbf{N}$ and solve with $\mathbf{M}$.
- Converges to the solution of $\mathbf{A} x=b$ for any $x^{(0)}$ if and only if $\rho(\mathbf{H})<1$ [largest magnitude of an eigenvalue is less than 1].


## Motivation

## Theorem

Let $\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}$ and $\alpha_{1} \geq \alpha_{2}$. Then, $\mathbf{A}$ is invertible if
(i) $\alpha_{1} \neq \alpha_{2}$,
(ii) $\alpha_{1}=\alpha_{2}$ and all connected components of $G_{\mathbf{A}}$ have an odd number of rows (and columns). If any such block is of even order, $\mathbf{A}$ is singular.

Define the splitting $\mathbf{A}=\alpha_{1} \mathbf{P}_{1}-\left(-\alpha_{2} \mathbf{P}_{2}\right)$.
The iterations are convergent with the rate $\alpha_{2} / \alpha_{1}$ for $\alpha_{1}>\alpha_{2}$.

Next generalize to more than two permutation matrices.

## Motivation: Let's generalize to solve $A x=b$

Let $\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}+\cdots+\alpha_{k} \mathbf{P}_{k}$ be a BvN.
Assume $\alpha_{1} \geq \cdots \geq \alpha_{k}$. Pick an integer $r$ between 1 and $k-1$ and split $\mathbf{A}$ as $\mathbf{A}=\mathbf{M}-\mathbf{N}$ where

$$
\mathbf{M}=\alpha_{1} \mathbf{P}_{1}+\cdots+\alpha_{r} \mathbf{P}_{r}, \quad \mathbf{N}=-\alpha_{r+1} \mathbf{P}_{r+1}-\cdots-\alpha_{k} \mathbf{P}_{k}
$$

( $M$ and $-N$ are doubly substochastic matrices.)

Computation: At every step $\mathbf{M}^{-1} \mathbf{N} x^{(i)}$

- multiply with $\mathbf{N}(k-r$ parallel steps).
- apply $\mathbf{M}^{-1}$ (or solves with the doubly stochastic matrix $\frac{1}{1-\sum_{i=r+1}^{k} \alpha_{i}} \mathbf{M}$ ); a recursive solver.


## Motivation: Let's generalize

Splitting $\mathbf{A}=\mathbf{M}-\mathbf{N}$ where

$$
\mathbf{M}=\alpha_{1} \mathbf{P}_{1}+\cdots+\alpha_{r} \mathbf{P}_{r}, \quad \mathbf{N}=-\alpha_{r+1} \mathbf{P}_{r+1}-\cdots-\alpha_{k} \mathbf{P}_{k} .
$$

## Theorem

A sufficient condition for $\mathbf{M}=\sum_{i=1}^{r} \alpha_{i} \mathbf{P}_{i}$ to be invertible: $\alpha_{1}$ is greater than the sum of the remaining ones.

## Theorem

Suppose that $\alpha_{1}$ is greater than the sum of all the other $\alpha_{i}$. Then $\rho\left(\mathbf{M}^{-1} \mathbf{N}\right)<1$ and the stationary iterative method converges for all $x^{0}$ to the unique solution of $\mathbf{A} x=b$.

This is a sufficient condition; . . . and it is rather restrictive in practice.(:)

## Motivation: Let's generalize

Open question: Identify other, less restrictive conditions on the $\alpha_{i}$ (with $1 \leq i \leq r$ ) that will ensure convergence (by the help of permutation matrices).

The natural idea (put the mass in $\mathbf{M}$ ) did not always work: we have examples with $k=3, r=2$ and $\alpha_{1}+\alpha_{2}>\alpha_{3}$.

Another option is to renounce convergence and use $\mathbf{M}$ as a preconditioner for a Krylov subspace method like GMRES.

## Motivation: Let's generalize to any $A$

M as a preconditioner for a Krylov subspace method like GMRES.
... need generalize to matrices with negative and positive entries.

## Scaling fact

Any nonnegative matrix A with total support can be scaled with two (unique) positive diagonal matrices $\mathbf{R}$ and $\mathbf{C}$ such that RAC is doubly stochastic [Sinkhorn \& Knopp, ' 67 and Knight, Ruiz and U.,'14].

Let $\mathbf{A}$ be $n \times n$ with total support and positive and negative entries.
$\mathbf{B}=\operatorname{abs}(\mathbf{A})$ is nonnegative and RBC is doubly stochastic.
We can write $\mathbf{R B C}=\sum \alpha_{i} \mathbf{P}_{i}$.

## Motivation: Let's generalize to any $A$

$\mathbf{B}=\operatorname{abs}(\mathbf{A})$ and $\mathbf{R B C}=\sum_{i}^{k} \alpha_{i} \mathbf{P}_{i}$.

$$
\mathbf{R A C}=\sum_{i}^{k} \alpha_{i} \mathbf{Q}_{i} .
$$

where $\mathbf{Q}_{i}=\left[q_{j k}^{(i)}\right]_{n \times n}$ is obtained from $\mathbf{P}_{i}=\left[p_{j k}^{(i)}\right]_{n \times n}$ as follows:

$$
q_{j k}^{(i)}=\operatorname{sgn}\left(a_{j k}\right) p_{j k}^{(i)} .
$$

## Generalizing Birkhoff-von Neumann decomposition

Any (real) matrix A with total support can be written as a convex combination of a set of signed, scaled permutation matrices.

We can then use the same construct to define $\mathbf{M}$ (for splitting or for defining the preconditioner).

## Linear algebraic problem and combinatorial problem

Reduce the complexity of the solver by reducing the cost of applying $\mathbf{M}$.

Find a BvN decomposition with the smallest number of perm. matrices.

Input: A doubly stochastic matrix A.
Output: A Birkhoff-von Neumann decomposition of $\mathbf{A}$ as $\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}+\cdots+\alpha_{k} \mathbf{P}_{k}$.
Measure: The number $k$ of permutation matrices in the decomposition.

This is NP-hard.

## Known results for the num. of permutation matrices: Upper bound

Marcus-Ree Theorem ['59]: $k \leq n^{2}-2 n+2$ for dense matrices;
[Brualdi\& Gibson,'77] and [Brualdi,'82]: for a sparse matrix with $\tau$ nonzeros

$$
k \leq \tau-2 n+\ell+1
$$

(containing $\ell$ submatrices with total support; take $\ell=1$ )

## Known results for the num. of permutation matrices: lower bound

A set $U$ of positions of the nonzeros of $\mathbf{A}$ is called strongly stable [Brualdi, '79]: if for each permutation matrix $\mathbf{P} \subseteq \mathbf{A}, p_{k l}=1$ for at most one pair $(k, I) \in U$.

## Lemma (Brualdi, '82)

Let A be a doubly stochastic matrix. Then, in a BvN decomposition of $\mathbf{A}$, there are at least $\gamma(\mathbf{A})$ permutation matrices, where $\gamma(\mathbf{A})$ is the maximum cardinality of a strongly stable set of positions of $\mathbf{A}$.
$\gamma(\mathbf{A}) \geq$ the maximum number of nonzeros in a row or a column of $\mathbf{A}$.

## Known results for the num. of permutation matrices: lower bound

$\gamma(\mathbf{A}) \geq$ the maximum number of nonzeros in a row or a column of $\mathbf{A}$.
[Brualdi,'82] shows that for any integer $t$

$$
1 \leq t \leq\lceil n / 2\rceil\lceil(n+1) / 2\rceil
$$

there exists an $n \times n$ doubly stochastic matrix $\mathbf{A}$ such that $\gamma(\mathbf{A})=t$.


## Heuristics: Generalized Birkhoff heuristic

1: $\mathbf{A}^{(0)}=\mathbf{A}$
2: for $j=1, \ldots$ do
3: find a permutation matrix $\mathbf{P}_{j} \subseteq \mathbf{A}^{(j-1)}$
4: the minimum element of $\mathbf{A}^{(j-1)}$ at the nonzero positions of $\mathbf{P}_{j}$ is $\alpha_{j}$ 5: $\quad \mathbf{A}^{(j)} \leftarrow \mathbf{A}^{(j-1)}-\alpha_{j} \mathbf{P}_{j}$

## Birkhoff's heuristic: Remove the smallest element

Let $\mu$ be the smallest nonzero of $\mathbf{A}^{(j-1)}$.
A step 3, find a perfect matching $M$ in the graph of $\mathbf{A}^{(j-1)}$ containing $\mu$.

Proposed greedy heuristic: Get the maximum $\alpha_{j}$ at every step
At step 3, among all perfect matchings in $\mathbf{A}^{(j-1)}$ find one whose minimum element is the maximum. Bottleneck matching: efficient implementations exist [Duff \& Koster, '01].

## Experiments (heuristics)

$\tau$ : the number of nonzeros in a matrix.
$d_{\text {max }}$ : the maximum number of nonzeros in a row or a column.

|  |  |  |  |  | Birkhoff |  | greedy |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| matrix | $n$ | $\tau$ | $d_{\text {max }}$ | $\sum_{i=1}^{k} \alpha_{i}$ | $k$ | $\sum_{i=1}^{k} \alpha_{i}$ | $k$ |  |
| aft01 | 8205 | 125567 | 21 | 0.16 | 2000 | 1.00 | 120 |  |
| bcspwr10 | 5300 | 21842 | 14 | 0.38 | 2000 | 1.00 | 63 |  |
| EX6 | 6545 | 295680 | 48 | 0.03 | 2000 | 1.00 | 226 |  |
| flowmeter0 | 9669 | 67391 | 11 | 0.51 | 2000 | 1.00 | 58 |  |
| fxm3_6 | 5026 | 94026 | 129 | 0.13 | 2000 | 1.00 | 383 |  |
| g3rmt3m3 | 5357 | 207695 | 48 | 0.05 | 2000 | 1.00 | 223 |  |
| mplate | 5962 | 142190 | 36 | 0.03 | 2000 | 1.00 | 153 |  |
| n3c6-b7 | 6435 | 51480 | 8 | 1.00 | 8 | 1.00 | 8 |  |
| s2rmq4m1 | 5489 | 263351 | 54 | 0.00 | 2000 | 1.00 | 208 |  |

[at most 2000 permutation matrices, or accumulated a sum of at least 0.9999]

## Experiments (linear systems)

Number of GMRES iterations

|  |  | M with different $r$ |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: |
| matrix | ilu(0) | 1 | 2 | 16 | 32 |
| bp_200 | 2 | 38 | 31 | 22 | 23 |
| gemat11 | 168 | 1916 | 1606 | 620 | 297 |
| gemat12 | 254 | 2574 | 1275 | 570 | 386 |
| Ins3937 | 348 | 1702 | 801 | 48 | 36 |
| mahindas | 37 | 225 | 158 | 43 | 32 |
| orani678 | 23 | 172 | 140 | 71 | 58 |

Number of nonzeros in M

| matrix | ilu(0) | 1 | 2 | 16 | 32 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| bp_200 | 125 | 0.32 | 0.52 | 0.75 | 0.75 |
| gemat11 | 31425 | 0.15 | 0.21 | 0.69 | 0.88 |
| gemat12 | 31184 | 0.15 | 0.20 | 0.64 | 0.79 |
| Ins3937 | 24002 | 0.15 | 0.25 | 0.59 | 0.65 |
| mahindas | 4744 | 0.12 | 0.16 | 0.29 | 0.36 |
| orani678 | 47823 | 0.04 | 0.04 | 0.05 | 0.06 |


| num. perm $(k)$ |  |
| :---: | ---: |
| matrix | $k$ |
| bp_200 | 5 |
| gemat11 | 48 |
| gemat12 | 34 |
| Ins3937 | 57 |
| mahindas | 154 |
| orani678 | 1053 |

Concluding remarks (recently shown)

Closed (or not so) problem: are there optimal points of the polytope $f^{-1}(\mathbf{S})$ other than those obtained by a generalized Birkhoff heuristic? YES:

## Concluding remarks (still open)

Open problem 1: can we find less restrictive conditions for having a convergent solution?

Open problem 2: a better heuristic than the proposed greedy one? Approximation guarantee?

Open problem 3: special, interesting cases that we can solve?
Open problem 4: among the optimal ones, is there one obtained by a generalized Birkhoff.

## Thanks!

Thanks for your attention.

## More information

- R. A. Brualdi, Notes on the Birkhoff algorithm for doubly stochastic matrices, Canadian Mathematical Bulletin, 25 (1982), pp. 191-199.
- M. Benzi, A. Pothen, and B. Uçar, Preconditioning techniques based on the Birkhoff-von Neumann decomposition, Technical report RR-8914, Inria - Research Centre Grenoble - Rhône-Alpes, 2016.
- F. Dufossé and B. Uçar, Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices, Linear Algebra and its Applications 497 (2016) 108-115.


## References I

宣
R. A. Brualdi, The diagonal hypergraph of a matrix (bipartite graph), Discrete Mathematics 27 (2) (1979) 127-147.
R. A. Brualdi, Notes on the Birkhoff algorithm for doubly stochastic matrices, Canadian Mathematical Bulletin, 25 (1982), pp. 191-199.

國 R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices: I. Applications of the permanent function, Journal of Combinatorial Theory, Series A, 22 (1977), pp. 194-230.
C. S. Chang, W. J. Chen, and H. Y. Huang, On service guarantees for input buffered crossbar switches: A capacity decomposition approach by Birkhoff and von Neumann, IEEE IWQos'99, 79-86, London, UK.
B
I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM Journal on Matrix Analysis and Applications 22 (2001) 973-996.

## References II

F. Dufossé and B. Uçar, Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices, Linear Algebra and its Applications 497 (2016) 108-115.
P. A. Knight, The Sinkhorn-Knopp algorithm: Convergence and applications, SIAM J. Matrix Anal. A. 30 (1) (2008) 261-275.
P. A. Knight and D. Ruiz, A fast algorithm for matrix balancing, IMA Journal of Numerical Analysis 33 (3) (2013) 1029-1047.

三-
P. A. Knight, D. Ruiz, and B. Uçar, A symmetry preserving algorithm for matrix scaling, SIAM J. Matrix Anal. A. 35 (3) (2014) 931-955.

R- M. Marcus and R. Ree, Diagonals of doubly stochastic matrices, The Quarterly Journal of Mathematics 10 (1) (1959) 296-302.
A. Pothen and C.-J. Fan, Computing the block triangular form of a sparse matrix, ACM T. Math. Software 16 (4) (1990) 303-324.

## References III

娄
D. Ruiz, A scaling algorithm to equilibrate both row and column norms in matrices, Tech. Rep. TR-2001-034, RAL (2001).

R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math. 21 (1967) 343-348.
D. de Werra, Variations on the Theorem of Birkhoff-von Neumann and extensions, Graphs and Combinatorics, 19 (2003), 263-278.D. de Werra, Partitioning the edge set of a bipartite graph into chain packings: Complexity of some variations, Linear Algebra and its Applications, 368 (2003) 315-327.

