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Introduction
Context

@ A matrix with many zeros @ A bipartite graph
(which are not stored). G=(RUC,E) with |R| =m
@ Permutation matrix: An n X n and [C| = n.
matrix with exactly one 1 in @ Perfect matching in (RUC, E):
each row and in each column a set of n edges no two share a
(other entries are 0) common vertex.
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Introduction

Context

A < Gp: edge between r;, ¢j if a;; # 0. (n x n in this talk).

Total support

A has total support if every edge in
Ga is in a perfect matching.

A has total support if every nonzero
in A is in a permutation matrix.
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Introduction

Context

An n x n matrix A is doubly stochastic if a;; > 0, and row sums and
column sums are 1.

A doubly stochastic matrix has total support.

Birkhoff's Theorem: A is a doubly stochastic matrix

There exist as, o, ..., ax € (0,1) with ZLI «; = 1 and permutation
matrices Py, Py, ..., Py such that:

A:O[1P1—|—O(2P2—|—"'—|—Oékpk.

@ Also called Birkhoff-von Neumann (BvN) decomposition.

@ Not unique, neither k, nor P;s in general.
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Introduction

Problem

INPUT: A doubly stochastic matrix A.

OuTtpuT: A Birkhoff-von Neumann decomposition of A as
A = a1P1 + 052P2 4+ +O(kpk.

MEASURE: The number k of permutation matrices in the
decomposition.

We show that the problem is NP-hard.

We also propose a heuristic and investigate some its properties
theoretically and experimentally.
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Introduction
Motivation

Consider solving aPx = b for x where P is a permutation matrix.

00 0 1 T by g =b1/a
0 01 0 i) _ b2 . 1‘3:[)2/0[
@ 1 0 0 O I3 o bg ylelds Ilzbg/a
01 0 0 T4 by Ty =by/a

We just scale the input and write at unique (permuted) positions in the
output. Should be very efficient.

Next consider solving (a1 Py + axP2)x = b for x.
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Introduction

Motivation

Consider solving (a1P1 4+ a2P2)x = b for x.

Matrix splitting and stationary iterations
for an invertible A = M — N with invertible M

xUH) = Hx() 4 ¢, where H=M"'N and c=M71h

where k =0,1,... and x(© is arbitrary.

o Computation: At every step, multiply with N and solve with M.

o Converges to the solution of Ax = b for any x(? if and only if
p(H) < 1 [largest magnitude of an eigenvalue is less than 1].

~
N
S
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Introduction

Motivation

Theorem

Let A = a1P1 + apP> and oy > an. Then, A is invertible if

(i) a1 # az,
(i) a1 = ap and all connected components of Gp have an odd number

of rows (and columns). If any such block is of even order, A is
singular.

Define the splitting A = a1 P1 — (—aaP»).

The iterations are convergent with the rate s/ for a3 > an.

Next generalize to more than two permutation matrices.
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Introduction

Motivation: Let’s generalize to solve Ax = b

Let A =a1P; + aoPy + -+ - 4+ a,P, be a BvN.

Assume a3 > - -+ > «ay. Pick an integer r between 1 and k — 1 and split
A as A =M — N where

M:alpl+"'+arpr7 N:_ar+lpr+1_"'_akpk~

(M and —N are doubly substochastic matrices.)

Computation: At every step M~ tNx(")
e multiply with N (k — r parallel steps).
e apply M~ (or solves with the doubly stochastic matrix
1

——7——M); a recursive solver.
1*Zf:r+1 Qi )
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Introduction

Motivation: Let’s generalize

Splitting A = M — N where
M=aPi+ - +aP, N=-01Pr1—-— P

A sufficient condition for M = Zle «P; to be invertible: a; is greater
than the sum of the remaining ones.

Suppose that « is greater than the sum of all the other «;. Then
p(M™IN) < 1 and the stationary iterative method converges for all x° to
the unique solution of Ax = b.

This is a sufficient condition; ...and it is rather restrictive in practice.®
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Introduction

Motivation: Let’s generalize

Open question: ldentify other, less restrictive conditions on the «; (with
1 < i < r) that will ensure convergence (by the help of permutation
matrices).

The natural idea (put the mass in M) did not always work: we have
examples with k =3, r =2 and a1 + az > as.

Another option is to renounce convergence and use M as a
preconditioner for a Krylov subspace method like GMRES.
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Introduction

Motivation: Let’s generalize to any A

M as a preconditioner for a Krylov subspace method like GMRES.

. need generalize to matrices with negative and positive entries.

Scaling fact

Any nonnegative matrix A with total support can be scaled with two
(unique) positive diagonal matrices R and C such that RAC is doubly
stochastic [ II

Let A be n x n with total support and positive and negative entries.

B = abs(A) is nonnegative and RBC is doubly stochastic.

We can write RBC = > «;P;.
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Introduction

Motivation: Let’s generalize to any A

B = abs(A) and RBC = 3_F o;P;.
K
RAC =) a,Q;.
where Q; = [qf,i)],,x,, is obtained from P; = [pj(,i)]nx,, as follows:

a5 = sen(ap)ply -

Generalizing Birkhoff-von Neumann decomposition

Any (real) matrix A with total support can be written as a convex
combination of a set of signed, scaled permutation matrices.

We can then use the same construct to define M (for splitting or for
defining the preconditioner).
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Problem complexity and heuristics

Linear algebraic problem and combinatorial problem

Reduce the complexity of the solver Find a BvN decomposition with the
by reducing the cost of applying M. J smallest number of perm. matrices. J

InpUT: A doubly stochastic matrix A.

OutpuT: A Birkhoff-von Neumann decomposition of A as
A=qa;Pi+ Py + -+ aPy.
MEASURE: The number k of permutation matrices in the
decomposition.

This is NP-hard.
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Problem complexity and heuristics

Known results for the num. of permutation

matrices: Upper bound

Marcus—Ree Theorem ['59]: k < n® —2n + 2 for dense matrices;

[Brualdi& Gibson,'77] and [Brualdi,'82]: for a sparse matrix with 7 nonzeros
k<t—-2n+/0+1

(containing ¢ submatrices with total support; take £ = 1)
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Problem complexity and heuristics

Known results for the num. of permutation

matrices: lower bound

A set U of positions of the nonzeros of A is called strongly stable
[Brualdi,'79]: if for each permutation matrix P C A, py = 1 for at most
one pair (k,1) € U.

Lemma (Brualdi,'82)

Let A be a doubly stochastic matrix. Then, in a BvN decomposition of
A, there are at least y(A) permutation matrices, where v(A) is the
maximum cardinality of a strongly stable set of positions of A.

~(A) > the maximum number of nonzeros in a row or a column of A.
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Problem complexity and heuristics

Known results for the num. of permutation

matrices: lower bound

~(A) > the maximum number of nonzeros
in a row or a column of A.

[ ] shows that for any integer t
1<t < [n/2][(n+1)/2]

there exists an n x n doubly stochastic
matrix A such that v(A) = t.
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Problem complexity and heuristics

Heuristics: Generalized Birkhoff heuristic

1 AD=A

2. forj=1,...do

3:  find a permutation matrix P; C AU-D

the minimum element of AU~1) at the nonzero positions of P; is a;
AU) — AUY — ;P;

Birkhoff’'s heuristic: Remove the smallest element

Let 1 be the smallest nonzero of AU~

Q@R

A step 3, find a perfect matching M in the graph of AU—1 containing s.

Proposed greedy heuristic: Get the maximum «; at every step

At step 3, among all perfect matchings in AU=1) find one whose
minimum element is the maximum. Bottleneck matching: efficient
implementations exist [ ]
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Experimental results

Experiments (heuristics)

7: the number of nonzeros in a matrix.
dmax: the maximum number of nonzeros in a row or a column.

Birkhoff greedy
matrix n T dmax | Dorq O k[ S o k
aft01 8205 125567 21 0.16 2000 1.00 120
bcspwrl0 5300 21842 14 0.38 2000 1.00 63
EX6 6545 295680 48 0.03 ' 2000 1.00 226
flowmeter0 | 9669 67391 11 0.51 = 2000 1.00 58
fxm3_6 5026 94026 = 129 0.13 2000 1.00 383
g3rmt3m3 | 5357 207695 48 0.05 = 2000 1.00 223
mplate 5962 142190 36 0.03 = 2000 1.00 153
n3c6-b7 6435 51480 8 1.00 8 1.00 8
s2rmg4ml | 5489 263351 54 0.00 2000 1.00 208

[at most 2000 permutation matrices, or accumulated a sum of at least 0.9999]
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Experimental results

Experiments (linear systems)

Number of GMRES iterations

M with different r
matrix | ilu(0) 1 21 16 | 32
bp_200 2 38 31 22 23

gematll 168 | 1916 | 1606 | 620 | 297

gematl2 254 | 2574 | 1275 | 570 | 386
Ins3937 348 | 1702 801 48 36

num. perm (k)

mahi_ndas 37 | 225 | 158 | 43| 32 g;;')’é g
orani678 23 172 140 71 58 gematll 48
gematl2 34

Number of nonzeros in M Ins?fQ37 >
e iu(0) 1 5 16 R mahl.ndas 154
orani678 1053

bp_200 125 | 0.32 | 052 | 0.75 | 0.75
gematll | 31425 | 0.15 | 0.21 | 0.69 | 0.88
gematl2 | 31184 | 0.15 | 0.20 | 0.64 | 0.79
Ins3937 24002 | 0.15 | 0.25 | 0.59 | 0.65
mahindas 4744 | 0.12 | 0.16 | 0.29 | 0.36
orani678 | 47823 | 0.04 | 0.04 | 0.05 | 0.06
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Concluding remarks
Concluding remarks (recently shown)

Closed (or not so) problem: are there optimal points of the polytope
f~1(S) other than those obtained by a generalized Birkhoff heuristic?
YES:
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Concluding remarks

Concluding remarks (still open)

Open problem 1: can we find less restrictive conditions for having a
convergent solution?

Open problem 2: a better heuristic than the proposed greedy one?
Approximation guarantee?

Open problem 3: special, interesting cases that we can solve?

Open problem 4: among the optimal ones, is there one obtained by a
generalized Birkhoff.
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Concluding remarks
LLELLE

Thanks for your attention.

More information

@ R. A. Brualdi, Notes on the Birkhoff algorithm for doubly stochastic
matrices, Canadian Mathematical Bulletin, 25 (1982), pp. 191-199.

o M. Benzi, A. Pothen, and B. Ugar, Preconditioning techniques based
on the Birkhoff-von Neumann decomposition, Technical report
RR-8914, Inria - Research Centre Grenoble — Rhdne-Alpes, 2016.

o F. Dufossé and B. Ugar, Notes on Birkhoff~von Neumann

decomposition of doubly stochastic matrices, Linear Algebra and its
Applications 497 (2016) 108-115.
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