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Introduction Problem complexity and heuristics Experimental results Concluding remarks

Context

Sparse matrix

A matrix with many zeros
(which are not stored).

Permutation matrix: An n × n
matrix with exactly one 1 in
each row and in each column
(other entries are 0)

Bipartite graphs

A bipartite graph
G = (R∪ C,E ) with |R| = m
and |C| = n.

Perfect matching in (R∪ C,E ):
a set of n edges no two share a
common vertex.
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Context

A⇐⇒ GA: edge between ri , cj if aij 6= 0. (n × n in this talk).

Total support

A has total support if every edge in
GA is in a perfect matching.

A has total support if every nonzero
in A is in a permutation matrix.

Our sample matrix does not have
total support.
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Context

An n × n matrix A is doubly stochastic if aij ≥ 0, and row sums and
column sums are 1.

A doubly stochastic matrix has total support.

Birkhoff’s Theorem: A is a doubly stochastic matrix

There exist α1, α2, . . . , αk ∈ (0, 1) with
∑k

i=1 αi = 1 and permutation
matrices P1,P2, . . . ,Pk such that:

A = α1P1 + α2P2 + · · ·+ αkPk .

Also called Birkhoff-von Neumann (BvN) decomposition.

Not unique, neither k , nor Pi s in general.
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Problem

Input: A doubly stochastic matrix A.

Output: A Birkhoff-von Neumann decomposition of A as
A = α1P1 + α2P2 + · · ·+ αkPk .

Measure: The number k of permutation matrices in the
decomposition.

We show that the problem is NP-hard.

We also propose a heuristic and investigate some its properties
theoretically and experimentally.
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Motivation

Consider solving αPx = b for x where P is a permutation matrix.
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x4 = b1/↵
x3 = b2/↵
x1 = b3/↵
x2 = b4/↵

We just scale the input and write at unique (permuted) positions in the
output. Should be very efficient.

Next consider solving (α1P1 + α2P2)x = b for x .
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Motivation

Consider solving (α1P1 + α2P2)x = b for x .

Matrix splitting and stationary iterations

for an invertible A = M−N with invertible M

x (i+1) = Hx (i) + c , where H = M−1N and c = M−1b

where k = 0, 1, . . . and x (0) is arbitrary.

Computation: At every step, multiply with N and solve with M.

Converges to the solution of Ax = b for any x (0) if and only if
ρ(H) < 1 [largest magnitude of an eigenvalue is less than 1].
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Motivation

Theorem

Let A = α1P1 + α2P2 and α1 ≥ α2. Then, A is invertible if

(i) α1 6= α2,

(ii) α1 = α2 and all connected components of GA have an odd number
of rows (and columns). If any such block is of even order, A is
singular.

Define the splitting A = α1P1 − (−α2P2).

The iterations are convergent with the rate α2/α1 for α1 > α2.

Next generalize to more than two permutation matrices.
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Motivation: Let’s generalize to solve Ax = b

Let A = α1P1 + α2P2 + · · ·+ αkPk be a BvN.

Assume α1 ≥ · · · ≥ αk . Pick an integer r between 1 and k − 1 and split
A as A = M−N where

M = α1P1 + · · ·+ αrPr , N = −αr+1Pr+1 − · · · − αkPk .

(M and −N are doubly substochastic matrices.)

Computation: At every step M−1Nx (i)

multiply with N (k − r parallel steps).

apply M−1 (or solves with the doubly stochastic matrix
1

1−
∑k

i=r+1 αi
M); a recursive solver.
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Motivation: Let’s generalize

Splitting A = M−N where

M = α1P1 + · · ·+ αrPr , N = −αr+1Pr+1 − · · · − αkPk .

Theorem

A sufficient condition for M =
∑r

i=1 αiPi to be invertible: α1 is greater
than the sum of the remaining ones.

Theorem

Suppose that α1 is greater than the sum of all the other αi . Then
ρ(M−1N) < 1 and the stationary iterative method converges for all x0 to
the unique solution of Ax = b.

This is a sufficient condition; . . .and it is rather restrictive in practice./
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Motivation: Let’s generalize

Open question: Identify other, less restrictive conditions on the αi (with
1 ≤ i ≤ r) that will ensure convergence (by the help of permutation
matrices).

The natural idea (put the mass in M) did not always work: we have
examples with k = 3, r = 2 and α1 + α2 > α3.

Another option is to renounce convergence and use M as a
preconditioner for a Krylov subspace method like GMRES.
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Motivation: Let’s generalize to any A

M as a preconditioner for a Krylov subspace method like GMRES.

. . . need generalize to matrices with negative and positive entries.

Scaling fact

Any nonnegative matrix A with total support can be scaled with two
(unique) positive diagonal matrices R and C such that RAC is doubly
stochastic [Sinkhorn & Knopp,’67 and Knight, Ruiz and U.,’14].

Let A be n × n with total support and positive and negative entries.

B = abs(A) is nonnegative and RBC is doubly stochastic.

We can write RBC =
∑
αiPi .
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Motivation: Let’s generalize to any A

B = abs(A) and RBC =
∑k

i αiPi .

RAC =
k∑

i

αiQi .

where Qi = [q
(i)
jk ]n×n is obtained from Pi = [p

(i)
jk ]n×n as follows:

q
(i)
jk = sgn(ajk)p

(i)
jk .

Generalizing Birkhoff–von Neumann decomposition

Any (real) matrix A with total support can be written as a convex
combination of a set of signed, scaled permutation matrices.

We can then use the same construct to define M (for splitting or for
defining the preconditioner).
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Linear algebraic problem and combinatorial problem

Reduce the complexity of the solver
by reducing the cost of applying M.

Find a BvN decomposition with the
smallest number of perm. matrices.

Input: A doubly stochastic matrix A.

Output: A Birkhoff-von Neumann decomposition of A as
A = α1P1 + α2P2 + · · ·+ αkPk .

Measure: The number k of permutation matrices in the
decomposition.

This is NP-hard.
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Known results for the num. of permutation
matrices: Upper bound

Marcus–Ree Theorem [’59]: k ≤ n2 − 2n + 2 for dense matrices;

[Brualdi& Gibson,’77] and [Brualdi,’82]: for a sparse matrix with τ nonzeros
k ≤ τ − 2n + `+ 1

(containing ` submatrices with total support; take ` = 1)
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Known results for the num. of permutation
matrices: lower bound

A set U of positions of the nonzeros of A is called strongly stable
[Brualdi,’79]: if for each permutation matrix P ⊆ A, pkl = 1 for at most
one pair (k, l) ∈ U.

Lemma (Brualdi,’82)

Let A be a doubly stochastic matrix. Then, in a BvN decomposition of
A, there are at least γ(A) permutation matrices, where γ(A) is the
maximum cardinality of a strongly stable set of positions of A.

γ(A) ≥ the maximum number of nonzeros in a row or a column of A.
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Known results for the num. of permutation
matrices: lower bound

γ(A) ≥ the maximum number of nonzeros
in a row or a column of A.

[Brualdi,’82] shows that for any integer t

1 ≤ t ≤ dn/2ed(n + 1)/2e

there exists an n × n doubly stochastic
matrix A such that γ(A) = t.
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Heuristics: Generalized Birkhoff heuristic

1: A(0) = A
2: for j = 1, . . . do
3: find a permutation matrix Pj ⊆ A(j−1)

4: the minimum element of A(j−1) at the nonzero positions of Pj is αj

5: A(j) ← A(j−1) − αjPj

Birkhoff’s heuristic: Remove the smallest element

Let µ be the smallest nonzero of A(j−1).

A step 3, find a perfect matching M in the graph of A(j−1) containing µ.

Proposed greedy heuristic: Get the maximum αj at every step

At step 3, among all perfect matchings in A(j−1) find one whose
minimum element is the maximum. Bottleneck matching: efficient
implementations exist [Duff & Koster,’01].

18/26 Doubly stochastic matrices @ Nashville



Introduction Problem complexity and heuristics Experimental results Concluding remarks

Experiments (heuristics)

τ : the number of nonzeros in a matrix.

dmax: the maximum number of nonzeros in a row or a column.

Birkhoff greedy

matrix n τ dmax

∑k
i=1 αi k

∑k
i=1 αi k

aft01 8205 125567 21 0.16 2000 1.00 120
bcspwr10 5300 21842 14 0.38 2000 1.00 63
EX6 6545 295680 48 0.03 2000 1.00 226
flowmeter0 9669 67391 11 0.51 2000 1.00 58
fxm3 6 5026 94026 129 0.13 2000 1.00 383
g3rmt3m3 5357 207695 48 0.05 2000 1.00 223
mplate 5962 142190 36 0.03 2000 1.00 153
n3c6-b7 6435 51480 8 1.00 8 1.00 8
s2rmq4m1 5489 263351 54 0.00 2000 1.00 208

[at most 2000 permutation matrices, or accumulated a sum of at least 0.9999]
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Experiments (linear systems)

Number of GMRES iterations

M with different r
matrix ilu(0) 1 2 16 32

bp 200 2 38 31 22 23
gemat11 168 1916 1606 620 297
gemat12 254 2574 1275 570 386
lns3937 348 1702 801 48 36

mahindas 37 225 158 43 32
orani678 23 172 140 71 58

Number of nonzeros in M
matrix ilu(0) 1 2 16 32

bp 200 125 0.32 0.52 0.75 0.75
gemat11 31425 0.15 0.21 0.69 0.88
gemat12 31184 0.15 0.20 0.64 0.79
lns3937 24002 0.15 0.25 0.59 0.65

mahindas 4744 0.12 0.16 0.29 0.36
orani678 47823 0.04 0.04 0.05 0.06

num. perm (k)

matrix k

bp 200 5
gemat11 48
gemat12 34
lns3937 57

mahindas 154
orani678 1053
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Concluding remarks (recently shown)

Closed (or not so) problem: are there optimal points of the polytope
f −1(S) other than those obtained by a generalized Birkhoff heuristic?

YES:
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Concluding remarks (still open)

Open problem 1: can we find less restrictive conditions for having a
convergent solution?

Open problem 2: a better heuristic than the proposed greedy one?
Approximation guarantee?

Open problem 3: special, interesting cases that we can solve?

Open problem 4: among the optimal ones, is there one obtained by a
generalized Birkhoff.
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Thanks!

Thanks for your attention.
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