
1/17

Optimal resilience patterns
to cope with fail-stop and silent errors

Anne Benoit1 Aurélien Cavelan1

Yves Robert1,2 Hongyang Sun1

1ENS Lyon & INRIA, France.

2University of Tennessee Knoxville, USA.

aurelien.cavelan@inria.fr

May 19, 2016, Nashville.

aurelien.cavelan@inria.fr

2/17

Why resilience?

Computing at exascale
I Larger node count: 105 or 106 nodes, each with 102 or 103 cores
I Shorter Mean Time Between Failures (MTBF) µ

Theorem: µp = µind
p for arbitrary distributions.

MTBF (individual node) 1 year 10 years 100 years
MTBF (platform of 106 nodes) 30 secs 5 mins 50 mins

Multiple error sources
I Many papers address fail-stop errors
I Many others address silent errors (or silent data corruptions)

HPC applications must cope with both error sources! /

Objective: unified framework and optimal algorithmic solutions ,

3/17

Coping with fail-stop errors

Instantaneous error detection, e.g., resource crash

Standard approach: Periodic checkpoint, rollback, and recovery:

TimeW W

fail-stop error

C C C

General-purpose approach! ,

Theorem.
W ∗ =

√
2µC [Young 1974, Daly, 2006]

µ: Platform MTBF
C : Checkpointing time

3/17

Coping with fail-stop errors

Instantaneous error detection, e.g., resource crash

Standard approach: Periodic checkpoint, rollback, and recovery:

TimeW W

fail-stop error

C C C

General-purpose approach! ,

Theorem.
W ∗ =

√
2µC [Young 1974, Daly, 2006]

µ: Platform MTBF
C : Checkpointing time

4/17

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

TimeW W

Detect!corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

4/17

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

TimeW W

Detect!

corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

4/17

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

TimeW W

Detect!corrupted!silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

4/17

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

TimeW W

Detect!corrupted!silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

4/17

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

TimeW W

Detect!corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

4/17

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

TimeW W

Detect!corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

4/17

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

TimeW W

Detect!corrupted!

silent error

corrupted?

C C C

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

5/17

Coping with Silent Errors

Solution: coupling checkpointing with verification

TimeW W

Error Detection

V ∗ C V ∗ C V ∗ C

I Before each checkpoint, run some verification
mechanism or error detection test

I Silent error, if any, is detected by verification
I Last checkpoint is always valid ,

Problem solved! But can do better than that!

6/17

One step further

Perform several verifications before each checkpoint:

Time

Error Detection

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

I Pro: silent error detected earlier in pattern ,
I Con: additional overhead in error-free executions /

Seems good! ,

6/17

One step further

Perform several verifications before each checkpoint:

Time

Error Detection

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

I Pro: silent error detected earlier in pattern ,
I Con: additional overhead in error-free executions /

Seems good! ,

Wait... Verifications with 100% accuracy?

7/17

Partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V) are available for many HPC applications!

I Lower accuracy: recall r = #detected errors
#total errors < 1 /

I Much lower cost, i.e., V < V ∗ ,

Time

Error Detect? Detect!

V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Ok! ,
Wait... Disk checkpoints are also expensive. Can we do better?

7/17

Partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V) are available for many HPC applications!

I Lower accuracy: recall r = #detected errors
#total errors < 1 /

I Much lower cost, i.e., V < V ∗ ,

Time

Error Detect? Detect!

V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Ok! ,

Wait... Disk checkpoints are also expensive. Can we do better?

7/17

Partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V) are available for many HPC applications!

I Lower accuracy: recall r = #detected errors
#total errors < 1 /

I Much lower cost, i.e., V < V ∗ ,

Time

Error Detect? Detect!

V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Ok! ,
Wait... Disk checkpoints are also expensive. Can we do better?

8/17

Two-level checkpointing

Two types of checkpoints
I Disk checkpoint: stable storage (slow but resilient)
I Memory checkpoint: local copy, (fast but lost on fail-stop)

Checkpoint only done after guaranteed verification.

Two types of responses
I Fail-stop error ⇒ rollback to last disk checkpoint
I Silent errors ⇒ rollback to last memory checkpoint

To do next:
I Combine everything into a single periodic pattern
I Minimize the expected execution time of the application

8/17

Two-level checkpointing

Two types of checkpoints
I Disk checkpoint: stable storage (slow but resilient)
I Memory checkpoint: local copy, (fast but lost on fail-stop)

Checkpoint only done after guaranteed verification.

Two types of responses
I Fail-stop error ⇒ rollback to last disk checkpoint
I Silent errors ⇒ rollback to last memory checkpoint

To do next:
I Combine everything into a single periodic pattern
I Minimize the expected execution time of the application

8/17

Two-level checkpointing

Two types of checkpoints
I Disk checkpoint: stable storage (slow but resilient)
I Memory checkpoint: local copy, (fast but lost on fail-stop)

Checkpoint only done after guaranteed verification.

Two types of responses
I Fail-stop error ⇒ rollback to last disk checkpoint
I Silent errors ⇒ rollback to last memory checkpoint

To do next:
I Combine everything into a single periodic pattern
I Minimize the expected execution time of the application

9/17

Resilience patterns (1/2)

Starting with base pattern

TimeW
Pattern

V ∗ CM CD V ∗ CM CD

Pattern à la Young-Daly

Adding verified memory checkpoints

Timew1 w2 wn
W

· · ·
· · ·

V ∗ CM CD V ∗ CM V ∗ CM V ∗ CM V ∗ CM CD

Pattern with n segments

10/17

Resilience patterns (2/2)

Adding intermediate verifications between memory checkpoints

Timewi,1 wi,2 wi,mi

W

· · ·
· · ·

V ∗ CM CD V V V V ∗ CM CD

Segment wi has mi chunks

Putting everything together

Timew1,1 w1,m1 wn,1 wn,mn
w1 wn

W

· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

V ∗ CM CD V V V ∗ CM V ∗ CM V V V ∗ CM CD

Full pattern

11/17

Model (1/3)

Failure arrivals follow exponential law Exp(λ), where λ = 1/µ.
I Independant
I Memoryless

Arrival rate Probability of failure
fail-stop λf pf = 1− e−λf w

silent λs ps = 1− e−λsw

Same order.
⇔ λf = Θ(λ), and λs = Θ(λ)

where λ = λf + λs = 1/µ (platform MTBE)

12/17

Model (2/3)

Two-level checkpointing.
I CD cost of disk checkpointing (RD for recovery)
I CM cost of memory checkpointing (RM for recovery)
I V cost of partial verification (with r < 1)
I V ∗ cost of guaranteed verification (with r = 1)

13/17

Model (3/3)

Finding optimal pattern

Timew1,1 w1,m1 wn,1 wn,mn
w1 wn

W

· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

V ∗ CM CD V V V ∗ CM V ∗ CM V V V ∗ CM CD

Total length #Segments #Chunks
W ∗ n∗ m∗

Minimizing pattern overhead

H(P) = E(P)
W − 1

14/17

Derivation: how?

TimeW
Pattern

V ∗ CM CD V ∗ CM CD

E(P) = pf (E(T lost) + RD + RM + E(P)
)

+ (1− pf)
(
W + V ∗ + ps(RM + E(P)) + (1− ps)(CM + CD)

)

H(P) = E(P)
W − 1 = V ∗ + CM + CD

W +
(
λs + λf

2

)
W

+ λs(V ∗ + RM) + λf (RM + RD) + O(λ2W 2)

W ∗ =
√

V ∗ + CM + CD

λs + λf
2

H∗(P) = 2

√(
λs + λf

2

)
(V ∗ + CM + CD) + O(λ)

14/17

Derivation: how?

TimeW
Pattern

V ∗ CM CD V ∗ CM CD

E(P) = pf (E(T lost) + RD + RM + E(P)
)

+ (1− pf)
(
W + V ∗ + ps(RM + E(P)) + (1− ps)(CM + CD)

)
H(P) = E(P)

W − 1 = V ∗ + CM + CD
W +

(
λs + λf

2

)
W

+ λs(V ∗ + RM) + λf (RM + RD) + O(λ2W 2)

W ∗ =
√

V ∗ + CM + CD

λs + λf
2

H∗(P) = 2

√(
λs + λf

2

)
(V ∗ + CM + CD) + O(λ)

14/17

Derivation: how?

TimeW
Pattern

V ∗ CM CD V ∗ CM CD

E(P) = pf (E(T lost) + RD + RM + E(P)
)

+ (1− pf)
(
W + V ∗ + ps(RM + E(P)) + (1− ps)(CM + CD)

)
H(P) = E(P)

W − 1 = V ∗ + CM + CD
W +

(
λs + λf

2

)
W

+ λs(V ∗ + RM) + λf (RM + RD) + O(λ2W 2)

W ∗ =
√

V ∗ + CM + CD

λs + λf
2

H∗(P) = 2

√(
λs + λf

2

)
(V ∗ + CM + CD) + O(λ)

15/17

Theorems

Pattern W ∗ n∗ m∗ H∗(P)

PD

√
V ∗+CM +CD

λs +
λf
2

– – 2

√(
λs + λf

2

)
(V ∗ + CM + CD)

PDV ∗

√
m∗V ∗+CM +CD

1
2

(
1+ 1

m∗
)

λs +
λf
2

–

√
λs

λs +λf
· CM +CD

V ∗

√
2(λs + λf)CM + CD +

√
2λs V ∗

PDV √
(m∗−1)V +V ∗+CM +CD

1
2

(
1+ 2−r

(m∗−2)r+2

)
λs +

λf
2

–

2 − 2
r +
√

λs
λs +λf

√
2(λs + λf)

(
V ∗ − 2−r

r V + CM + CD
)

×

√
2−r

r

(V ∗+CM +CD
V − 2−r

r

)
+
√

2λs
2−r

r V

PDM

√
n∗(V ∗+CM)+CD

λs
n∗ +

λf
2

√
2λs
λf

· CD
V ∗+CM

– 2
√

λs (V ∗ + CM) +
√

2λf CD

PDMV ∗

√
n∗m∗V ∗+n∗CM +CD
1
2

(
1+ 1

m∗
)

λs
n∗ +

λf
2

√
λs
λf

· CD
CM

√
CM
V ∗

√
2λf CD +

√
2λs CM +

√
2λs V ∗

PDMV √
n∗(m∗−1)V +n∗(V ∗+CM)+CD

1
2

(
1+ 2−r

(m∗−2)r+2

)
λs
n∗ +

λf
2

√
λs
λf

· CD
V ∗− 2−r

r V +CM

2 − 2
r

√
2λf CD +

√
2λs
(

V ∗ − 2−r
r V + CM

)
+

√
2−r

r

(V ∗+CM
V − 2−r

r

)
+
√

2λs
2−r

r V

16/17

Experiments

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Hera

Predicted
Simulated

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Atlas

Predicted
Simulated

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

E
xp

ec
te

d
O

ve
rh

ea
d

0

0.05

0.1

0.15

0.2
Platform Coastal

Predicted
Simulated

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

P
er

io
d

W
 (

in
 h

ou
rs

)

0

10

20

30

Platform Hera

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

P
er

io
d

W
 (

in
 h

ou
rs

)

0

10

20

30

Platform Atlas

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

P
er

io
d

W
 (

in
 h

ou
rs

)

0

10

20

30

Platform Coastal

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

ck

pt
s

/ v
er

ifs
 p

er
 h

ou
r

0

10

20

30
Platform Hera

Disk Checkpoints
Mem. Checkpoints
Verifications

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

ck

pt
s

/ v
er

ifs
 p

er
 h

ou
r

0

10

20

30
Platform Atlas

Disk Checkpoints
Mem. Checkpoints
Verifications

Patterns

P
D

P
DV* P

DV
P

DM
P

DMV* P
DMV

ck

pt
s

/ v
er

ifs
 p

er
 h

ou
r

0

10

20

30
Platform Coastal

Disk Checkpoints
Mem. Checkpoints
Verifications

17/17

Conclusion

Unified framework
I Error and application model
I Resilience patterns
I Optimal solutions

Next
I Multilevel fail-stop errors
I Replication vs checkpointing?

Thanks!

17/17

Methods for Detecting Silent Errors
General-purpose approaches

I Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962]

Application-specific approaches
I Algorithm-based fault tolerance (ABFT): checksums in dense matrices

Limited to one error detection and/or correction in practice [Huang and
Abraham 1984]

I Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]

I Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]

I Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013]

Data-analytics approaches
I Dynamic monitoring of HPC datasets based on physical laws (e.g.,

temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]

I Time-series prediction, spatial multivariate interpolation [Di et al. 2014]

	Appendix

