Optimal resilience patterns
to cope with fail-stop and silent errors

Anne Benoit! Aurélien Cavelan!
Yves Robert!?> Hongyang Sun!

LENS Lyon & INRIA, France.

2University of Tennessee Knoxville, USA.

aurelien.cavelan@inria.fr

May 19, 2016, Nashville.

aurelien.cavelan@inria.fr

Why resilience?

Computing at exascale
> Larger node count: 10° or 10° nodes, each with 102 or 103 cores

> Shorter Mean Time Between Failures (MTBF) u

Theorem: p, = “;7"“ for arbitrary distributions.

MTBF (individual node) 1 year | 10 years | 100 years

MTBF (platform of 10° nodes) | 30 secs | 5 mins | 50 mins

Multiple error sources
» Many papers address fail-stop errors

> Many others address silent errors (or silent data corruptions)

HPC applications must cope with both error sources! ®

Objective: unified framework and optimal algorithmic solutions ©

Coping with fail-stop errors

Instantaneous error detection, e.g., resource crash

Standard approach: Periodic checkpoint, rollback, and recovery:

fail-stop error;

< < [

W W Time

Coping with fail-stop errors

Instantaneous error detection, e.g., resource crash

Standard approach: Periodic checkpoint, rollback, and recovery:

fail-stop error;

< < [

W W Time

General-purpose approach! ©

Theorem.
W* =/2uC [Young 1974, Daly, 2006]

w: Platform MTBF
C: Checkpointing time

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

silent error
])]]

W W Time

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

silent error Detect!
-

W W Time

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

silent error; corrupted! Detect!
<] X /I/TI

7 X

W W Time

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

silent error; corrupted! / Detect!
[] X [c]

7 X

W W Time

Keep multiple checkpoints?

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

corrupted? corrupted! Detect!

N\ 7 Y

w w Time

Keep multiple checkpoints?

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

corrupted! Detect!
%] X /i

W W Time

Keep multiple checkpoints? -‘

Which checkpoint to recover from?

Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

corrupted! Detect!
%] X /i

W W Time

Keep multiple checkpoints? -‘
Which checkpoint to recover from?

Need an active method to detect silent errors!

Coping with Silent Errors

Solution: coupling checkpointing with verification

Error Detection
vl ¢ ; vl c vl ¢

w w Time
M
» Before each checkpoint, run some verification '
mechanism or error detection test

» Silent error, if any, is detected by verification

» Last checkpoint is always valid ©

Problem solved! But can do better than that!

One step further

Perform several verifications before each checkpoint:

EI’FOF; Detection

viic| [v[/[v] [v[c] [v] [v] [v]c

Time

» Pro: silent error detected earlier in pattern ©

» Con: additional overhead in error-free executions &®

Seems good! ©

One step further

Perform several verifications before each checkpoint:

E""Of; Detection

viic| [v[/[v] [v[c] [v] [v] [v]c

Time

» Pro: silent error detected earlier in pattern ©

» Con: additional overhead in error-free executions &®

Seems good! ©

Wait... Verifications with 100% accuracy?

Partial verification

Guaranteed/perfect verifications (V*) can be very expensive!
Partial verifications (V') are available for many HPC applications!

= #detected errors <1 @

» Lower accuracy: recall ZFtotal errors

» Much lower cost, ie., V < V* ©

Partial verification

Guaranteed/perfect verifications (V*) can be very expensive!
Partial verifications (V') are available for many HPC applications!

r= #detected errors <1 @

> Lower accuracy: recall ZFtotal errors

» Much lower cost, ie., V < V* ©

Error Detect?

Detect!

Time

Okl ©

Partial verification

Guaranteed/perfect verifications (V*) can be very expensive!
Partial verifications (V') are available for many HPC applications!

r= #detected errors <1 @

> Lower accuracy: recall ZFtotal errors

» Much lower cost, ie., V < V* ©

Error Detect?

Detect!

Time

Okl ©

Wait... Disk checkpoints are also expensive. Can we do better?

Two-level checkpointing

Two types of checkpoints

» Disk checkpoint: stable storage (slow but resilient)

» Memory checkpoint: local copy, (fast but lost on fail-stop)

Checkpoint only done after guaranteed verification.

Two-level checkpointing

Two types of checkpoints

» Disk checkpoint: stable storage (slow but resilient)

» Memory checkpoint: local copy, (fast but lost on fail-stop)
Checkpoint only done after guaranteed verification.

Two types of responses

> Fail-stop error = rollback to last disk checkpoint

» Silent errors = rollback to last memory checkpoint

Two-level checkpointing

Two types of checkpoints

» Disk checkpoint: stable storage (slow but resilient)

» Memory checkpoint: local copy, (fast but lost on fail-stop)
Checkpoint only done after guaranteed verification.

Two types of responses

> Fail-stop error = rollback to last disk checkpoint

» Silent errors = rollback to last memory checkpoint

To do next:

» Combine everything into a single periodic pattern

» Minimize the expected execution time of the application

Resilience patterns (1/2)

Starting with base pattern

V*|Cu| Cp V¥ Cu| Cp

w Time

Pattern

Pattern a la Young-Daly

Adding verified memory checkpoints

WVAleul ol |vleu] [vleu] - vled] e o
<— < <

wi wo c Wh Time
w

Pattern with n segments

Resilience patterns (2/2)

Adding intermediate verifications between memory checkpoints

Pele] [[- [Rl
<

wi 1 w; 2 e Wi m; Time
w

Segment w; has m; chunks

Putting everything together

et N i W e e

1 1 ;(71 W,7 1 W,, gin Time

wi Wn

w

Full pattern

Model (1/3)

Failure arrivals follow exponential law Exp(\), where A = 1/p.
» Independant

» Memoryless

Arrival rate | Probability of failure
fail-stop | Ar pl=1—e v
silent As pP=1— e AW
Same order.

< A =0(A), and A\s = O(N)
where A = A\ + As = 1/ (platform MTBE)

Model (2/3)

Two-level checkpointing.

» Cp cost of disk checkpointing (Rp for recovery)
» Cp cost of memory checkpointing (Rp for recovery)
» V cost of partial verification (with r < 1)

» V* cost of guaranteed verification (with r = 1)

Model (3/3)

Finding optimal pattern

viafco| [v]--[v] e - [v]c] [v]--[v] [v]a]co
= = = =

11 Wiy Wnl " Wi, Time

Total length | #Segments | #Chunks
w* n* m*

Minimizing pattern overhead

H(P) =

=
NG

Derivation: how?

v*[Cum| Co V*[Cu| Co

% Time

Pattern

E(P) = p’ (E(T"*) + Rp + Ru + E(P))
+ (1= p") (W + V* + p*(Ru + E(P)) + (1 — p°)(Cum + Cp))

Derivation: how?

v*[Cum| Co V*[Cu| Co

% Time

Pattern

E(P) = p’ (E(T"*) + Rp + Ru + E(P))
+ (1= p") (W + V* + p*(Ru + E(P)) + (1 — p°)(Cum + Cp))

H(P)—IE‘(/‘/P’)—l—\/J“‘C/‘/“”C‘)+<AS+A2f>W

+ A(V* + Ru) + Ae(Rm + Rp) + O(\2W?)

Derivation: how?

v*[Cum| Co V*[Cu| Co

% Time

Pattern

E(P) = p’ (E(T"*) + Rp + Ru + E(P))
+ (1= p") (W + V* + p*(Ru + E(P)) + (1 — p°)(Cum + Cp))

E(P .
H(P)—‘(/V)—l—VJF‘C/V“”CD+<A5+A2f>W

+ A(V* + Ru) + Ae(Rm + Rp) + O(\2W?)

V* 4+ C C
W — + M/\"F D
As + 5

H*(P) = 2\/(/\5 + >\2f) (V* + Cy + CD) + O()\)

Theorems

Pattern w* n m* H*(P)
> Af x
Pp - - (/\5+T)(V + Cum + Cp)
VOt C Ve
Ppus mTV*Cy+Cp _)\)r/\ CHIh A/ 2(Xs + Ar)Cum + Cp + 4 /2AsV*
3 (s) et i
Pov \/2()\5+>\f) (v* - 27’v+cM+cD)
VA e e I IRV Y
P s D 24/ As(V* + € 20/ €
om e o - VG /G
P oy 3= % u 1/2)\,CD+\/m+\/2)\5V‘
Pouy 2-2 /20 Cp + 4 /206 (v* - 2:'V+CM)
s
Af
4 Z’V(VCCM_ZVr + 2*52 ry

Experiments

Platform Hera Platform Atlas Platform Coastal

Expected Overhead
Expected Overhead
Expected Overhead

Patterns Patterns Patterns

Platform Hera Platform Atlas Platform Coastal

@30 @30 730
5 5 5
2 2 2
£20 £20 £20
B B 2
=t =t 3
210 210 S 10
41) I i
o a o

Po Povt Pov Pou Pouvt Powy

Patterns
Platform Hera

Po Povr Pov Pou Powv* Pouy

Patterns
Platform Atlas

Po Povt Pov Pou Powv* Pouy

Patterns
Platform Coastal

= = 30 =

5 5 5

2 I Disk Checkpoints 2 I Disk Checkpoints 2 I Disk Checkpoints

5 [Mem. Checkpoints 5 [Mem. Checkpoints 5 [Mem. Checkpoints

2201 | Cverifications 2201 | T verifications 220 | T verifications

K s]

2 2 g

S 10 % 10 3 10

o ° o

g g g

S S S

* o o mo *® | 10 Y I = * ul OO0 @m0 m
PD PDV* PDV pDM PDMV* pDMV PD F’DV* PDV PDM PDMV* PDMV pD PD\/* pDV PDM PDM\/* PDMV

Patterns Patterns Patterns

Conclusion

Unified framework

» Error and application model
» Resilience patterns

» Optimal solutions

Next

» Multilevel fail-stop errors

» Replication vs checkpointing?

Thanks!

Methods for Detecting Silent Errors

General-purpose approaches

> Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962]

Application-specific approaches

> Algorithm-based fault tolerance (ABFT): checksums in dense matrices
Limited to one error detection and/or correction in practice [Huang and

Abraham 1984

> Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]

> Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]

> Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013]

Data-analytics approaches

» Dynamic monitoring of HPC datasets based on physical laws (e.g.,
temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]

> Time-series prediction, spatial multivariate interpolation [Di et al. 2014]

	Appendix

