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Why resilience?

Computing at exascale
> Larger node count: 10° or 10° nodes, each with 102 or 103 cores

> Shorter Mean Time Between Failures (MTBF) u

Theorem: p, = “;7"“ for arbitrary distributions.

MTBF (individual node) 1 year | 10 years | 100 years

MTBF (platform of 10° nodes) | 30 secs | 5 mins | 50 mins

Multiple error sources
» Many papers address fail-stop errors

> Many others address silent errors (or silent data corruptions)

HPC applications must cope with both error sources! ®

Objective: unified framework and optimal algorithmic solutions ©



Coping with fail-stop errors

Instantaneous error detection, e.g., resource crash

Standard approach: Periodic checkpoint, rollback, and recovery:

fail-stop error;
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General-purpose approach! ©

Theorem.
W* =/2uC  [Young 1974, Daly, 2006]

w: Platform MTBF
C: Checkpointing time



Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

silent error
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Coping with Silent Errors

Silent error detected only when corrupted data is activated
e.g., soft faults in L1 cache, ALU, double bit flip.

Main problem: detection latency
Same approach?

corrupted! Detect!
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Keep multiple checkpoints? -‘
Which checkpoint to recover from?

Need an active method to detect silent errors!



Coping with Silent Errors

Solution: coupling checkpointing with verification

Error Detection
vl ¢ ; vl c vl ¢

w w Time
M
» Before each checkpoint, run some verification '
mechanism or error detection test

» Silent error, if any, is detected by verification

» Last checkpoint is always valid ©

Problem solved! But can do better than that!



One step further

Perform several verifications before each checkpoint:

EI’FOF; Detection

viic| [v[/[v] [v[c] [v] [v] [v]c

Time

» Pro: silent error detected earlier in pattern ©

» Con: additional overhead in error-free executions &®

Seems good! ©
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» Pro: silent error detected earlier in pattern ©

» Con: additional overhead in error-free executions &®

Seems good! ©

Wait... Verifications with 100% accuracy?



Partial verification

Guaranteed/perfect verifications (V*) can be very expensive!
Partial verifications (V') are available for many HPC applications!

= #detected errors <1 @

» Lower accuracy: recall ZFtotal errors

» Much lower cost, ie., V < V* ©
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Wait... Disk checkpoints are also expensive. Can we do better?



Two-level checkpointing

Two types of checkpoints

» Disk checkpoint: stable storage (slow but resilient)

» Memory checkpoint: local copy, (fast but lost on fail-stop)

Checkpoint only done after guaranteed verification.
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Two-level checkpointing

Two types of checkpoints

» Disk checkpoint: stable storage (slow but resilient)

» Memory checkpoint: local copy, (fast but lost on fail-stop)
Checkpoint only done after guaranteed verification.

Two types of responses

> Fail-stop error = rollback to last disk checkpoint

» Silent errors = rollback to last memory checkpoint

To do next:

» Combine everything into a single periodic pattern

» Minimize the expected execution time of the application



Resilience patterns (1/2)

Starting with base pattern

V*|Cu| Cp V¥ Cu| Cp

w Time

Pattern

Pattern a la Young-Daly

Adding verified memory checkpoints
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Pattern with n segments



Resilience patterns (2/2)

Adding intermediate verifications between memory checkpoints

Pele] [ [ - [ Rl
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Segment w; has m; chunks

Putting everything together
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Model (1/3)

Failure arrivals follow exponential law Exp(\), where A = 1/p.
» Independant

» Memoryless

Arrival rate | Probability of failure
fail-stop | Ar pl=1—e v
silent As pP=1— e AW
Same order.

< A =0(A), and A\s = O(N)
where A = A\ + As = 1/ (platform MTBE)



Model (2/3)

Two-level checkpointing.

» Cp cost of disk checkpointing (Rp for recovery)
» Cp cost of memory checkpointing (Rp for recovery)
» V cost of partial verification (with r < 1)

» V* cost of guaranteed verification (with r = 1)



Model (3/3)

Finding optimal pattern

viafco| [v]--[v] e - [v]c] [v]--[v] [v]a]co
= = = =

11 Wiy Wnl " Wi, Time

Total length | #Segments | #Chunks
w* n* m*

Minimizing pattern overhead

H(P) =

=
NG



Derivation: how?

v*[Cum| Co V*[Cu| Co
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Pattern

E(P) = p’ (E(T"*) + Rp + Ru + E(P))
+ (1= p") (W + V* + p*(Ru + E(P)) + (1 — p°)(Cum + Cp))
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Derivation: how?

v*[Cum| Co V*[Cu| Co

% Time

Pattern

E(P) = p’ (E(T"*) + Rp + Ru + E(P))
+ (1= p") (W + V* + p*(Ru + E(P)) + (1 — p°)(Cum + Cp))

E(P .
H(P)—‘(/V)—l—VJF‘C/V“”CD+<A5+A2f>W

+ A(V* + Ru) + Ae(Rm + Rp) + O(\2W?)

V* 4+ C C
W — + M/\"F D
As + 5

H*(P) = 2\/(/\5 + >\2f) (V* + Cy + CD) + O()\)




Theorems
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Experiments

Platform Hera Platform Atlas Platform Coastal
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Conclusion

Unified framework

» Error and application model
» Resilience patterns

» Optimal solutions

Next

» Multilevel fail-stop errors

» Replication vs checkpointing?

Thanks!



Methods for Detecting Silent Errors

General-purpose approaches

> Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962]

Application-specific approaches

> Algorithm-based fault tolerance (ABFT): checksums in dense matrices
Limited to one error detection and/or correction in practice [Huang and

Abraham 1984

> Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]

> Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]

> Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013]

Data-analytics approaches

» Dynamic monitoring of HPC datasets based on physical laws (e.g.,
temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]

> Time-series prediction, spatial multivariate interpolation [Di et al. 2014]
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