LACL
H A S
Plan B: Interruption of |
Ongoing MPI Operations to T

THE UNIVERSITY OF
I ENNESSEE
KNOXVILLY

Support Failure Recovery
Aurelien Bouteiller

Scheduling Workshop
Nashville, May 19, 2016

W A B v

KDo we heed fault tolerance? S es seo

Toward Exascale Computing (My Roadmap)

® NO M Based on proposed DOE roadmap with MTTI adjusted to scale linearly
° Systems 2009 2011 2015 2018
Hardware can take care of _ - oy wet
everything. And [of course] will ! e 10PB
o : H Node performance 125 GF 200GF 200-400 GF 1-10TF
The future tense is important ! e oo Do oan oo ces
- At what cost ($, energy)? Node concurency 12 %2 0(100) 0(1000)
Interconnect BW 1.5 GB/s 22 GBls 25 GB/s 50 GB/s
| System size (nodes) 18,700 100,000 500,000 O(milion) |
. Total concumrency 225,000 3,200,000 O(50,000,000) O(bilion)
Storage 15PB 30 PB 150 PB 300 PB
 Meanwhile from a HPC - e
: : {mTTI 4days 19h4min 3h52min 1h56min |
viewpolint = o p—

« Large platforms report several hard
failures a day with tens/hundreds of :
applications to be rerun Faul tolerance becomes critcal at Petascale (MTTI <= 1day)

- ECC might not be enough to protect ol o el i

the data from Silent Data ! wﬂt]" : o
COfoptiOnS Cost of non optimal checkpoint intervals: "

«®._Also an issue at Petascdl
e

oY YYD

» Future HPC platforms will grow in computing syelom s weaiod due o kren and rooverss,
number of resources and by simple Dr. EN. (Mootaz) Elnozahyet al. System Resilience at Ex&amoic;g‘

probabilistic deduction the frequency
of faults will increase

i |

Courtesy of F. Cappello

<
J

MPAI:3: Fault Tolerance support

« We have algorithms (uncoordinated |
checkpoint, forward recovery), but they expect
MPI to continue to operate across failures

« MPI support of FT is non-existent

« Prevents effective deployment of efficient, application
specific approaches

« MPI_ERRORS_ARE_FATAL (default mode)

« Application crashes at first failure
« MPI_ERRORS_RETURN

* Error returned to the user
« State of MPI undefined

« “..does not necessarily allow the user to continue to use MPI after an
error is detected. The purpose of these error handler is to allow a user to
issue user-defined error messages and take actions unrelated to MPI...An
MPI implementation is free to allow MPI to continue afteran error...” (
MPI-1.1, page 195)

« “Advice to implementors: A good quality implementation will, to the
greatest possible extent, circumvent the impact of an error, so that normal
processing can continue after an error handler was invoked.”

- EEEERAYTTY"Y"YS

—

1 4

'\ Backward recovery: C/R

Coordinated checkpoint (possibly with] . .
| incremental checkpoints) « Coordinated checkpoint is the
Checkpoints stored on other compute nodes
No I/0 activity (or greatly reduced), full network

workhorse of FT today
|/0 intensive, significant failure free overhead ®
Full rollback (1 fails, all rollback) ®
ULFM enables user-level
deployment of in-memory, Buddy-
bandwidth
« Checkpoints taken independently
ﬁ H _ - Based on variants of Message Logging

Checkpomts Diskless checkpoint

H%

« Can be deployed w/o MPI support ©
« 1 fails, 1 rollback

« Can be implemented w/0 a standardized

user API
ﬁ H H h « Benefit from ULFM: implementation
becomes portable across multiple MPI

libraries

oY ""YN"Y"YS

L ARV

f Forward Recovery

« Forward Recovery: Any technique that
permit the application to continue without
rollback

Master-Worker with simple resubmission

Iterative methods, Naturally fault tolerant algorithms
» Algorithm Based Fault Tolerance

Replication (the only system level Forward Recovery)

« No checkpoint |1/0 overhead
« No rollback, no loss of completed work

« May require (sometime expensive, like
replicates) protection/recovery
operations, but still generally more
scalable than checkpoint ©

« Often requires in-depths algorithm
rewrite (in contrast to automatic
system based C/R) ®

.......................... >
Master
WorkerO
Workerl
Worker2
Applications =RaYy

Lattice Boltzmann Flow Solver
University College London

Processor fails

» Re-initialize substitute processor
with average mass flow, velocity
from neighbors

passable error in domain size and
magnitude if real solution sufficiently smooth

CRESTQ®
®

1 4

J'\ Application Recovery Patterns

Coordinated CheckpointyRestart, Automatic Naturally Fault Tolerant Applications, Master-Worker,

Compiler Assisted, User-driven Checkpointing, etc Domain Decomposition, etc
In-place restart (Lo, without disposing of non-faded processes) ApplcCaton CONSNUEs 3 SIMpie COMMUMCITION patterm
accelerates recavery, pemsts in-memaory checkpoint ignonng failures
Master » | ' A “rg

|), I “. / \ \

| wavs <\ B\ -

| Worker .

- Worker2

ULFM MPI

Specification

Uncoordinated Checkpoint/Restan
Transactional FT, Migration

Algorithm Fault Tolerance

Replication, etc AT
............ >
ULFM makes these sapproaches poctable across MPl implementatons ULFM allows for the deployment S = = = = = = = = = = >
-------- et 4
of ultra-scafable, algorithm ;
| | | | specihic FT techniques tradng =atru
6 protecton
- — — — wpdstedy @
— — e — pplyng the
s 3 same
CRErLoTs

User Level Failure Mitigation: a set of MPI interface extensions to enable MPI
programs to restore MPI communication capabilities disabled by failures

-

1 4

Requirements for MPI standardization of FT

- Expressive, simple to use Application

« Support legacy code, backward compatible
Upliforen

« Enable users to porttheir code simply
« Support a variety of FT models and approaches | Crigeigainie/

. . . . ¢
- Minimal (ideally zero) impact on ==

failure free performance FALURELACKIIREVOKE
« No global knowledge of failures SIRIRUNZS || ACIRES
* No supplementary communications to maintain

global state

IVIPI

» Realistic memory requirements

« Simple to implement
« Minimal (or zero) changes to existing functions
« Limited number of new functions
» Consider thread safety when designing the API

P S — - R WA S Y

SlcL @

)

J

L ARV

Minimal Feature Set for a Resilient MPI

 Failure Notification
 Error Propagation
« Error Recovery

Not all recovery strategies
require all of these features, What s the scope of a failure?
that’s why the interface splits Who should be notified about?
notification, propagation and

recovery.

Application
CHECKIOITY Uniiforssl Othe
(C0![ECHIVES:

ULFM is not a recovery strategy, but a
minimalistic set of building blocks for more
complex recovery strategies.

B L —— - R A S N

<
J

et gl

Integration with existing mechanisms

* New error codes to deal with failures

« MPI_ERROR_PROC_FAILED: report that the operation discovered a newly
dead process. Returned from all blocking function, and all completion
functions.

« MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking
MPI_ANY_SOURCE potential sender has been discovered dead.

- MPI_ERROR_REVOKED:a communicator has been declared improper for
further communications. All future communications on this communicator
will raise the same error code, with the exception of a handful of recovery
functions

L XV

Summary of new functions

(comm)
Resumes matching for MPI_ANY_SOURCE
(comm, &group)

« Returns to the user the group of processes acknowledged to have failed

(comm)

— Non-collective collective, interrupts all operations on comm
(future or active, at all ranks) by raising MPI_ERR_REVOKED

(comm, &newcomm)

— Collective, creates a new communicator without failed
processes (identical at all ranks)

(comm, &mask)

— Collective, agrees on the AND value on binary mask,
ignoring failed processes (reliable AllReduce), and the
return core

>

UOI1EJIION

) <

uonegedo.d

> <

KI1ON020Y

<A BTNV
Bibliography of users’ activit
LFLR, FENIX, FTLA, Falanx, X10
. HAMOUDA, Sara S., MILTHORPE, Josh, STRAZDINS, Peter E., et al. A Resilient Framework for Iterative Linear Algebra Applications in X10. In: 16th IEEE International Workshop on Parallel and
Distributed Scientific and Engineering Computing (PDSEC 2015). 2015.
. ST PAULI, P. Arbenz et SCHWAB, Ch. Intrinsic fault tolerance of multi level Monte Carlo methods. ETH Zurich, Computer Science Department, Tech. Rep, 2012.
. PAULI, Stefan, KOHLER, Manuel, et ARBENZ, Peter. A fault tolerant implementation of Multi-Level Monte Carlo methods. In: PARCO. 2013. p. 471-480.
. BLAND, Wesley, DU, Peng, BOUTEILLER, Aurelien, et al. Extending the scope of the Checkpoint-on-Failure protocol for forward recovery in standard MPI. Concurrency and computation: Practice

and experience, 2013, vol. 25,n0 17, p. 2381-2393.

. ALI, Md Mortuza, SOUTHERN, James, STRAZDINS, Peter, et al. Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver. In : Parallel & Distributed Processing Symposium
Workshops (IPDPSW), 2014 IEEE International. |EEE, 2014.p. 1169-1178.

. NAUGHTON, Thomas, ENGELMANN, Christian, VALLEE, Geoffroy, et al.Supporting the development of resilient message passing applications using simulation. In : Parallel, Distributed and
Network-Based Processing (PDP), 2014 22nd Euromicro International Conference on. IEEE, 2014. p. 271-278.

. ENGELMANN, Christian et NAUGHTON, Thomas. Improving the Performance of the Extreme-scale Simulator. In : Proceedings of the 2014 IEEE/ACM 18th International Symposium on
Distributed Simulation and Real Time Applications. IEEE Computer Society, 2014. p. 198-207.

. TERANISHI, Keita et HEROUX, Michael A. Toward Local Failure Local Recovery Resilience Model using MPI-ULFM. In : Proceedings of the 21st European MPI Users' Group Meeting. ACM, 2014. p.
51.

. ALI, Md Mohsin, STRAZDINS, Peter E., HARDING, Brendan, et al. A fault-tolerant gyrok|net|c plasma application using the sparse grid combination technique. In : High Performance Computing &
Simulation (HPCS) 2015 International Conference on. IEEE 2015. p. 499-507

. VALLEE, Geoffroy, NAUGHTON, Thomas, BOHM, Swen, etal. Aruntime enwronment for supporting research in resilient HPC system software & tools. In: Computing and Networking (CANDAR),
2013 First International Symposium on. IEEE, 2013. p. 213-219.

. ZOUNMEVO, Judicael A., KIMPE, Dries, ROSS, Robert, et al. Extreme-scale computing services over MPI: Experiences, observations and features proposal for next-generation message passing
interface. International Journal of High Performance Computing Applications, 2014, vol. 28, no 4, p. 435-449.

. NAUGHTON, Thomas, BOHM, Swen, ENGELMANN, Christian, et al. Using Performance Tools to Support Experiments in HPC Resilience. In : Euro-Par 2013: Parallel Processing Workshops.
Springer Berlin Heidelberg, 2014. p. 727-736.

. ENGELMANN, Christian et NAUGHTON, Thomas. A NETWORK CONTENTION MODEL FOR THE EXTREME-SCALE SIMULATOR.
. GAMELL, Marc, KATZ, Daniel S., KOLLA, Hemanth, et al. Exploring automatic, online failure recovery for scientific applications at extreme scales. In : Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. |IEEE Press, 2014. p. 895-906.

. XIAOGUANG, Ren, XINHAI, Xu, YUHUA, Tang, et al. An Application-Level Synchronous Checkpoint-Recover Method for Parallel CFD Simulation. In : Computational Science and Engineering (C

. Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. 2013. Using MPI in high-performance computing services. In Proceedings of the 20th European MPI Users' Group Meeting
(EuroMPI '"13). ACM, New York, NY, USA, 43-48.SE), 2013 IEEE 16th International Conference on. IEEE, 2013. p. 58-65.

. Jinho Ahn, "N Fault-Tolerant Sender-Based Messa%3 Log; |n for Group Communication-Based Message Passing Systems," in Computational Science and Engineering (CSE), 2014 IEEE 17th
International Conference on , vol., no., pp.1296-1 1 Dec. 2014. 16

14 m X10 over Sockets (IP over Infiniband)

mean of rho at t=0.06 mean of rho at t=0.06 E kg/m? 12 W X10 over ULFM (Infiniband)
20.0 20.0 20.0 10
17.5 17.5 17.5
15.0 15.0 15.0
12.5 12.5 12.5 ' 6
10.0 10.0 10.0
7.5 7.5 7.5 2
5.0 5.0 5.0 o
2.5 2.5 2.5 Non Resilient Resilient no failure Resilient with a failure
’ ' ' (3 checkpoints + 1 restore)
0.0 0.0 0.0

The performance improvement due to using ULFM

v1.0 for running the LULESH proxy application [3]

(a shock hydrodynamics stencil based simulation)

running on 64 processes on 16 nodes with|
T

5

o)

Time in seconds

IS

(a) failure-free (b) few failures (c) many failures .

Credl ts: ETH Zurich
Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

A S N

L)

/‘-‘\‘ '“'

a1 1 4

* User projects: Resilient X10

« X10 is a PGAS programming language

» Legacy resilient X10 TCP based

try{ /*Task A*/

Place r Place p | | Place g

. at (p) { /*Task B*/ pinish | :
Happens Before Invariance ' keq async ci3
Principle (HBI): finish { at (gq) async { /*Task C*/ } } A)-——1+=(B—-Tr—~(C
Failure of a place should not alter m
the happens before relationship b

between statements at the

remaining places. } catch(dpe:DeadPlaceException){ /*recovery steps*/}
D;

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C finishes, despite the loss of the
synchronization construct (finish) at place p

« MPI operations in resilient X10 runtime o P —
u over Sockets over Infinipan
. Pro%ress loop does MPI_lprobe, post needed recv according to M m X120 over ULEM (finibard)
probes 12
» Asynchronous background collective operations (on multiple 2 10
different commsto form 2d grids, etc). g8 8
* Recovery g
* Upon failure, all communicators recreated (from shrinking a)
large communicator with spares, or using MPI_COMM_SPAWN ?
to get new OneS) ° Non Resilient Resilient no failure Resilient with a failure
» Ranks reassigned identically to rebuild the same X10 “teams” (3 checkpoints + 1 restore)
° i i The performance improvement due to using ULFM
Injectlon Of FT Iayer) _ v1.0 for running the LULESH proxy application [3]
« Unnecessary, x10 has a runtime that hides all MPI from the (a shock hydrodynamics stencil based simulation)

application and handles failures internally running on 64 processes on 16 nodes with

‘ Source: Sara Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, Olivier Tardieu. Resilient X10 over Fault Tolerant MPI. In : poster
session SC’15, Austin, TX, 2015.

- - Ph——— a— .

A A N

— N

PNy W g

User projects: Fenix+S3D

Fenix is a framework to provide scoped user
Ievel checkpoint/restart

Prowdes some of the same services provided by the
“MPI_Reinit” idea floated around by T. Gamblin

» Recoverfailed processes with revoke-shrink-spawn-reoder
sequence

* Revovered andsurviving processes jump back to the start
(longjump in Fenix_init)
Fenix has helpers to perform user directed “in-memory” or
“buddy” checkpointing (and reload)

» Injection of FT layer: PMPI based

Fenix_Checkpoint_Allocate mark a memory
segment (baseptr,size) as partof the
checkpoint.

Fenix_Init Initialize Fenix, and restart point
after a recovery, status contains info about
the restart mode

Fenix_Comm_Add can be used to notify

Fenix about the creation of user
communicators

Fenix_Checkpoint performs a checkpoint of
marked segments

O oo —a o\ Wi B W b —

allocate (yspc (nx,ny,nz,nslvs))

allocate (other_arrays)

call MPI_Init()

[...] ! Initialize non-conflicting modules

call Fenix_Checkpoint_Allocate (C_LOC (yspc),
sizeof (yspc), ckpt_yspc)

call Fenix_Init (Fenix_Neighbors,PEER_NODE_SIZE,
Fenix_resume_to_init, status, C_LOC(world))

if (status.eq.Fenix_st_survivor) then
[...] ! Finalize conflicting modules
endif
[...] ! Initialize conflicting modules
if (status.eq.Fenix_st_new)
call initialize_yspc()
endif

do ! Main loop
[...] ! Iterate and update yspc array
if (mod(step-1,CHECKPOINT_PERIOD).eq.0) then
call Fenix_Checkpoint (ckpt_yspc);
endif
enddo

call Fenix_Finalize()
call MPI Finalize()

.

~~eSr U

GAMELL, Marc, KATZ, Daniel S., KOLLA, Hemanth, et al. Exploring automatic, online failure recovery for scientific applications atextreme scales. In
: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE Press, 2014. p. 895-906.

. . 00 L

-

s A
a0

ALlaE T EER YV

User projects: Fenix+S3D

« S3D is a production, highly

parallel method-of-lines solver
for PDEs

« used to perform first-principles-based direct
numerical simulations of turbulent
combustion

 S3D rendered fault tolerant

using Fenix/ULFM

35 lines of code modified in

S3D in total!

* Order of magnitude

performance improvementin
failure scenarios

» thanks to online recovery and in-memory
checkpoint advantage over |/0 based
checkpointing

 |njection of FT layer: addition

of a couple of Fenix calls

1 call MPI_Comm_split (gcomm, py+1000xpz, r, xcomm)
2 call MPI_Comm_split (gcomm, px+1000*pz, r, ycomm)
3 call MPI_Comm_split (gcomm, px+1000xpy, r, zcomm)
4 call Fenix_ Comm_Add (xcomm) ;

5 call Fenix_Comm_Add (ycomm) ;

6 call Fenix Comm_Add (zcomm) ;

7 [...]

8 call MPI_Comm_split (gcomm, xid, r, yz_comm)

9 call MPI_Comm_split (gcomm, yid, r, Xz_comm)

10 call MPI_Comm_split (gcomm, zid, r, xy_comm)

11 call Fenix_Comm_Add (yz_comm) ;

12 call Fenix_Comm_Add (xz_comm) ;

13 call Fenix_Comm_Add (xy_comm) ;

S3D Code snippet to declare to Fenix the
communicatorsto recover

Pictures and examples from M. Gamel&al
SC14’ paper

Checkpoint time (s)

0.35

0.3

0.25

0.2

0.15

0.05

communication
memcpy()

9 garbage collection
0.6TB/s 2.4TB/s
b 1.2TB/s

§ 0.2TB/s
0.1TB/s
| 0.7TB/s

- — T. — T — T. — T — T — T — T — T

7000 2797 409g '5'000 756‘95 32768 5'4000 72500 09500 2>

3.8TB/s
16.8TB/s

Core count

Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers |
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

Am. . - - - . 4‘"..

L
[2
g

P———
L)

—

W A B

J'\ Errors are visible only for operations that

y Example: only rank4 should
- can t Complete report the failure of rank 5
« Operations that can’t complete return Se

ERR_PROC_FAILED

« State of MPI objects unchanged (communicators,
etc)

« Repeating the same operation has the same
outcome
« Operations that can be completed
return MPI_SUCCESS

« Pt-2-pt operations between non failed ranks can
continue

This model is enough to support M/W etc.

Recv (ANY)
Detected W1

th\\ %/7\ 7\)/\ |

00060

14

Full Capabilities Recovery

« Some applications are moldable

 Shrink creates a new communicator on which collectives
work

« Some applications are not moldable

« Spawn can recreate a “same size” communicator

» It is easy to reorder the ranks according to the original
ordering

eSS YTYY e

e el

Resolving transitive dependencies

Recv(P,): Failed
P, calls Revoke

. P1 fails

P2 raises an error and wants !
to change comm patternto do *
application recovery

* but P3..Pn are stuck in their
posted recv

« P2 can unlock them with
Revoke

P3..Pnjoin P2 in the recovery

R TS

:
£ICL |

PRy s

Errors and Collective Communications

proc_failed_err_handler(MPI_Comm comm, int err) {
if(err == MPI_ERR_PROC_FAILED | |
err == MPI_ERR_REVOKED) {
if(err == MPI_ERR_PROC_FAILED) MPI_Comm_revoke(comm);
recovery(comm);

}
}

deadlocking_collectives(void) {
for(i=0; i<nbrecyv; i++)
MPI_Bcast(buff, count, datatype, O, comm);
}

» Lax consistency: Exceptions are raised only at ranks
where the Bcast couldn’t succeed

* |n a tree-based Bcast, only the subtree under the failed process sees the
failure

« Other ranks succeed and proceed to the next Bcast

« Ranksthat couldn’t complete enter “recovery”, do not match the Bcast posted

at other ranks => MPI_Comm_revoke(comm) interrupts unmatched Bcast and
forces an exception (and triggers recovery) at all ranks

- _ - e e - - ey,
> Y

ALlaE T EER YV

Contribution 1.

MPI_Comm_revoke = Reliable Broadcast

* The revoke notification need to be propagated to all alive
- processes (almost like a reliable broadcast)

 |In the context of MPI_Comm_revoke, the 4 defining
qualities of a reliable broadcast (Termination, Validity,
Integrity and Agreement) can be relaxed (non-uniform

verS|ons)
« Agreement, Validity: . Revoke
has a single state (revoked) and all processes will eventually converge their views.
» Integrity: . The revoked communicator is immutable,
so multiple deliveries is not an issue g

« Termination: Once a communicator is locally known as revoked no further propagation of
the state change

« As we don’t need uniform variants of the revoke
operation, we are not bound to fully-connected overlay
topologies (Hamiltonian is more than enough)

)
3
.

'{

ALlaE T EER YV

Contribution 2: Identifying a suitable
underlying topology

* The basic behavior of a process: once it receives a
revoke message for the first time it delivers it to all
neighbors

« The agreement property can only be guaranteed when failures do not
disconnect the overlay graph

* Fully connected topologies do have such a property
out they scale poorly with the number of processes.
n practice:

« Number of messages quadratic

» Resource exhaustion: too many simultaneously opened channels, too many
unexpected messages or posted receives

« We need a better topology with small degree and

diameter, hardened and bridgeless
« Torus, HiC, CST, Hypercube, Chord (not good enough)

1 4

J'\ Binomial Graph (BMG)

« Undirected graph G:=(V, E), |V|=n (any size)
 Node i={0,1,2,...,n-1} has links to a set of nodes U
« U={itl,ix2,...,i+2K | 2k< n} in a circular space
« U={(i+1)mod n, (i+2)mod n,..., (i+2K\mod n | 2¥x<n} and

{ (n+i-1)mod n, (n+i-2)mod n,..., (n+i-2)mod n | 2k<n'}

@ 2 Belong to the connected Circulant
SZ77 A\~ 2’@ graph family: biconnected,

bridgeless, cyclic, Hamiltonian,
LCF, regular, traceable, and vertex-

@
transitive.
@

: Angskun, T., Bosilca, G., Dongarra, J. "Binomial Graph: A
@ @ Scalable and Fault- Tolerant Logical Network Topology,"
Proceedings of The Fifth International Symposium on

!
Parallel and Distributed Processing and Applications
— (ISPAQY), Springer, Niagara Falls, Canada, 2007 i

oY ""YN"YYS

P .

Binomial Graph (BMG)

« Merging all necessary links creates a binomial tree from each
node in the graph.

Properties

/1. Broadcast messages \
from any node
within [log, ()] steps
2. Extremely difficult to bipartite
3. Easyto compute an alternate
routing around failed processes

@ Interesting self-healing propertie&

| —
—

e L —— . - R AEA ST %

SlCL it

Basic Properties of BMG

* Degree 0 (hnumber of neighbors)

O = ¢

Diameter

—
(B

—
o

< [logon|) — 1

< [log,nl) — 2

..). X [Il)gz 'l]

(D)= O(| =1}

HiC sssssisnsas
16 | Hypercube -
Chord ~--%---
2z
g 8
5
0
5 4
a
2
1 " $ L L
16 32 64 128 512 1024
Number of Nodes

For n =2

Otherwise

Average Distance

For n = 2k

k where k € N

+ 27 where k,j €

(d) _log, (n%

32

Torus

ch

CST ——

__ 16 F Hypercube -~

) Chord ---%:-~
(=]
&L
3
g
2
(o)
o
0
5
z

1 . N N . .
16 32 64 128 256 512 1024
Number of Nodes

Bipartite vs. Failed

relat|onsh|p

80

11 nodes
| 13 nodes ---------
70 14 nodes +-eer
15 nodes e
60 I 17 nodes -~
18 nodes
= S50 20 nodes e
8 24 nodes e
S 40 |
]
m
e 3071
20 +
10
O L

% Failed Nodes

0 10 20 30 40 50 60 70 80 90 100

Ou. R TENESEE

L ARV

! Evaluating Revoke Cost

J Plan A

O~
0D
28
28
ca
<=

AllReduce
(before revoke)
AllReduce
(before revoke)

E'

One rank Revokes

« Two duplicate of MPI_COMM_WORLD:

Plan B

AllReduce
(29 post revoke)

AllReduce
(1st post revoke)

Revoke notification echo

 Onthe blue communicator:

* Repeat allreduce (measure baseline time)
« At some iteration, one rank revokes the blue communicator
 Measure the time it takes for the last allreduce to be revoked at all ranks

Immediately after, on the green communicator

* Repeat allreduce (this comm is not revoked, no deads, so everything works w/o errors)

« Measure the time it takes for the first, second, ...

revoke cannot be observed

AlIReduce
(3 post revoke)

- The cost of Revoke cannot
be measured directly. Atthe
initial caller is essentially O
(immediate operation,
completes in the background)

- Instead we measure the
impact of a revoke on
subsequent operations

- Even after a Revoke has
delivered to all ranks, the
“revoke tokens” are still

circulating on the network

collective, until the background noise generated by

Darter platform, a Cray XC30 at NICS724 compute nodes with 2 x 2.6 GHz Intel 8-core XEON E5-
2600 (Sandy Bridge), connected via a Cray Aries router with a bandwidth of 8GB/sec.

$ICL i

et gl

> Evaluation: Initiator Location

J

TIME (us)

180

170

Revoke Time and Perturbation in Barrier (np=6000)

- - - - Fault Free Barrier ' '
—s7— Revoked Barrier
- —>¢— 18t post-revoke Barrier i 3
—— 29 host-revoke Barrier 5
— 5hpost revoke Barrier
: : =
““““““ . e i N
B A vV, : \7 W v,]
X VT R / V
V V W V¥ v 3
{... V.. N LY ;
\4 : '

1 1 1 1 1

1k 2k 3k 4k 5k 6k

Revoke Initiator Rank

« The underlying BMG topology is
symmetric and reflects in the
revoke which is independent of
the initiator

« The performance of the first post-
Revoke collective operation
sustains some performance
degradation resulting from the
network jitter associated with the
circulation of revoke tokens

« After the fifth Barrier
(approximately 700us), the
applicationis fully resynchronized,
and the Revoke reliable broadcast
has completely terminated,
therefore leaving the application
free from observable jitter.

¢
¢
i

)

a1 1 d

> Evaluation: Collective pattern

Revoke Time and Perturbation in AllReduce (4Bytes) Pe rfo rmance Of

—o— Fault Free AllReduce

"~ Revoked AllReduce | POST- Revoke

—»— 15t post-revoke AllReduce

T e stovors AlReducs | collective

: | | | communications
follows the same
scalability trend
as the pre-
Revoke
operations, even
those impacted
by jitter.

TIME (us)

. Y """

2k 3k 4k 5k 6k
#PROCESSES ’

T e mn |

K,
J

a1 1 d

Evaluation: Message Size

1e+06 — T T
t —o— Fault Free AllReduce

| msssm Fault Free [Min:Avg+Standard Dev.]

10000 |

TIME (us)

1000 |

100

10

Revoke Time and Perturbation in AllReduce (np=6000)

[st post-revoke AllReduce
100000 |

Revoked AllReduce
Revoked AllIReduce [Min:Avg+stddev]

15! post-revoke [Min:Avg+Standard Dev]
2"d' host-revoke AllReduce

3'd post-revoke AllReduce e isi—igi—Er
Cray AllReduce

A -

— - ¥
- — -
- /

"4 v 7

..

| « Performance penalty

64 256 1K 4K 16K 64K 256K 1M 4M

MESSAGE SIZE (Bytes)

* Propagation time for
Revoke messages ~=
small message allreduce
latency

« After the revoke has

propagated, noise
continue for another
small message allreduce
latency

only visible for small
message operations and
only for a short duration.

oY YYD

e 1 14

kConclusion

« ULFM is not a fault management approach

« It’s a toolbox to build higher-level application/domain specific techniques
« Critical to improve the scalability and performance of the ULFM constructs

« detection / revoke / agreement*

* There are now viable alternatives to handling the
faults by C/R

« HPC applications can definitively benefit
« This makes MPI a suitable programming environment for domains outside HPC

« Scalable fault tolerant algorithmic building blocks
« Applications beyond MPI (OpenSHMEM, runtime systems, etc).

* Herault, T., Bouteiller, A., Bosilca, G., Gamell, M., Teranishi,
K., Parashar, M., Dongarra, J. "Practical Scalable Consensus
for Pseudo-Synchronous Distributed Systems,"

SuperComputing, Austin, TX, November, 2015

- EEEERAYTTY"Y"YS

-‘

A 'l“‘ ,‘ \\ -."
3 . “{ ~q
A
A o

14

JK- More info, resources

http://fault-tolerance.org/
« Standard draft working group

« https://github.com/mpiwg-ft/ft-issues/issues

* Prototype implementation available

« Version 1.1 based on Open MPI 1.7 released late November 2015
https://bitbucket.org/icldistcomp/ulfm

« Full communicator-based (point-to-point and all flavors of collectives)
support

« Network support IB, uGNI, TCP, SM
« RMA, I/0 in progress

oY TYY"YYS

S, e

