SCHEDULING SPARSE SYMMETRIC FAN-BOTH CHOLESKY
FACTORIZATION

Mathias Jacquelin
mjacquelin@lbl.gov

Esmond Ng, Kathy Yelick and Yili Zheng
egng|kayelick|yzheng@lbl.gov

May 18 2016
Scalable Solvers Group

Computational Research Department
Lawrence Berkeley National Laboratory

mjacquelin@lbl.gov

OUTLINE

Background and motivation
Fan-In, Fan-Out and Fan-Both factorizations
Parallel distributed memory implementation, a.k.a. symPACK

Numerical experiments

1/19

OBJECTIVE & MOTIVATION

Motivations:

- Sparse matrices arise in many applications:

- Optimization problems
- Discretized PDEs

- Some sparse matrices are symmetric

2/19

OBJECTIVE & MOTIVATION

Motivations:

- Sparse matrices arise in many applications:

- Optimization problems
- Discretized PDEs

- Some sparse matrices are symmetric

Challenges for current and future platforms:

- Higher relative communication costs

- Lower amount of memory per core

2/19

OBJECTIVE & MOTIVATION

Objective:

- Compute sparse A = LLT factorization
- A Is sparse symmetric matrix

- Ais positive definite
- Need to exploit symmetry

- L is a lower triangular matrix

3/19

SPARSE MATRICES AND ELIMINATION TREE

Processor list:
ey~ po|p1| P2 P
0 1 2 3
822, 5
4
0000
00000
000000
00
(X] (X
00
(LJ (X
(X o0
o0 o0
9] - Fillin, Q(A) C Q(L)
[}
-
00
000
00000
000000
A=LLT

Q(A) is the sparsity pattern of A 4/19

1%}
il
24
-
=
S
=
<
=2
=
-
w
o
=
<
(%2]
38}
i
=
<
=
Ll
%]
(24
<
s
(%2]

Processor list:

=]

- Fillin, Q(A) C QL)
4/19

LLT

A

Q(A) is the sparsity pattern of A

SPARSE MATRICES AND ELIMINATION TREE

1 .
Processor list:
°
e Pol| P1| P2| Ps3
.....
oee
0000
00000
i+
(X) [
[[J
(L4 [(X @
(L4 [000
™ eececeec, - Elim. tree represents
“:. column dependences
esssse | O] - Fillin, Q(A) € QL)
000 []
000000 ®
000000 ®
o0 +
o0 +
(X]

Q(A) is the sparsity pattern of A 4/19

SPARSE MATRICES AND ELIMINATION TREE

1 .
Processor list:
°
e, Po| P1| P2| P3
oooo.
ose
e000
00000
eccose
o0 ec00
ec000
o0 eoeeee
o0 e000000
4 eoecccee, - Elim. tree represents
o0
S column dependences
444 - Fillin, Q(4) C Q(L)
FPTTTY bt NS q
444 upernode, same
e structure below diagonal
Y block

Q(A) is the sparsity pattern of A 4/19

CHOLESKY FACTORIZATION

- Only lower triangular part of A is stored

- Basic algorithm:

Algorithm 1: Basic Cholesky algorithm

for columnj =1ton do
bj = A
forrowi=j+1tondo
| &y =414

end

for columnk =j +1ton do
forrowi=ktondo
Aik =Air —lij - Llrj
end

end

end

5/19

CHOLESKY FACTORIZATION

- Only lower triangular part of A is stored

- Basic algorithm:

Algorithm 1: Basic Cholesky algorithm

for columnj =1ton do
bj = A
forrowi=j+1tondo
| &y =414

end

Factor column

for columnk =j +1ton do
forrowi=ktondo
Aik =Air —lij - Llrj
end

end

end

5/19

CHOLESKY FACTORIZATION

- Only lower triangular part of A is stored

- Basic algorithm:

Algorithm 1: Basic Cholesky algorithm

for columnj =1ton do
bj = A
forrowi=j+1tondo
| &y =414

end

Factor column

Update next columns
for columnk =j +1ton do P

forrowi=~ktondo
A =Air = Lij L
end

end

end

5/19

CHOLESKY FACTORIZATION

- Only lower triangular part of A is stored

- Basic algorithm:

Algorithm 1: Basic Cholesky algorithm

for columnj =1ton do
bj = A
forrowi=j+1tondo
| &y =414

end

Factor column

Update next columns

fi [k=j+1tond
or cotumn J+iiondo and Aggregate updates

forrowi=~ktondo
A =Air = Lij L
end

end

end

5/19

CHOLESKY FACTORIZATION

- Only lower triangular part of A is stored

- Basic algorithm:

Algorithm 1: Basic Cholesky algorithm

for columnj =1ton do

bj = A

forrowi=j+1tondo ,
Factor column

| =AY,

end

Update next columns
and Aggregate updates
forrowi=ktondo

tmp; = tmp; + ¢ - Lgj
end
Ak = Ak —tMp.

for columnk =j +1ton do
forrowi=ktondo
Aik =Air —lij - Llrj
end

end

end

5/19

fan-both ALGORITHM

- Three families [Ashcraft'95]:
- Fan-In: “fanning-in updates”

- Reduce aggregate vectors (updates)
- Factorize column
- Compute all updates from that column locally

6/19

fan-both ALGORITHM

- Three families [Ashcraft'95]:
- Fan-In: “fanning-in updates”

- Reduce aggregate vectors (updates)
- Factorize column
- Compute all updates from that column locally

- Fan-Out: “fanning-out factors”

- Factorize column
- Distribute the Cholesky factor
- Compute and apply all updates to my column.

6/19

fan-both ALGORITHM

- Three families [Ashcraft'95]:
- Fan-In: “fanning-in updates”

- Reduce aggregate vectors (updates)
- Factorize column
- Compute all updates from that column locally

- Fan-Out: “fanning-out factors”

- Factorize column
- Distribute the Cholesky factor
- Compute and apply all updates to my column.

Family determined by type of data exchanged

6/19

fan-both ALGORITHM

- Three families [Ashcraft'95]:
- Fan-In: “fanning-in updates”

- Reduce aggregate vectors (updates)
- Factorize column
- Compute all updates from that column locally

- Fan-Out: “fanning-out factors”

- Factorize column
- Distribute the Cholesky factor
- Compute and apply all updates to my column.

Family determined by type of data exchanged

Fan-In, Fan-Out C Fan-Both

6/19

fan-both ALGORITHM

- Three families [Ashcraft’95]: Fan-In, Fan-Out C Fan-Both

- Task based algorithm:

- A(i): accumulation of aggregate
vectors (updates) to column i

Reduces the aggregate vectors t*
- F(j): factorization of col. j

Produces cholesky factor ¢, 0

- U(j,): update of col. i with col. j

Put the update in an (temporary) aggregate vector ¢,

7/19

fan-both ALGORITHM

- Three families [Ashcraft’95]: Fan-In, Fan-Out C Fan-Both

- Task based algorithm:

- A(i): accumulation of aggregate
vectors (updates) to column i

Reduces the aggregate vectors t*
- F(j): factorization of col. j

Produces cholesky factor ¢, 0

- U(j,): update of col. i with col. j

Put the update in an (temporary) aggregate vector ¢,

7/19

fan-both ALGORITHM

- Three families [Ashcraft’95]: Fan-In, Fan-Out C Fan-Both

- Task based algorithm:

- A(i): accumulation of aggregate
vectors (updates) to column i

Reduces the aggregate vectors t*
- F(j): factorization of col. j

Produces cholesky factor ¢, 0

- U(j,): update of col. i with col. j

Put the update in an (temporary) aggregate vector ¢,

7/19

fan-both MAPPINGS

How do we map tasks ? 1D Cyclic distribution

(independently of data)

- Use of 2D computation mapping Virtual 20 mapping M

grid M P e R

20244
101(3]3
4| 4

- Mapping grid “extends” to matrix size

8/19

fan-both MAPPINGS

1D Cyclic distribution

- How do we map tasks ?
(independently of data)

- Use of 2D computation mapping
grid M

- Mapping grid “extends” to matrix size
- Better if P processors on diagonal

Virtual 2D mapping M

1

1

3

3

2

2

1

1

4
3
4

4
3
4

8/19

fan-both MAPPINGS

1D Cyclic distribution

- How do we map tasks ?
(independently of data)

- Use of 2D computation mapping
grid M
- Mapping grid “extends” to matrix size

- Better if P processors on diagonal
- Many possible mappings

Virtual 2D mapping M

1

1

3

3

2

2

1

1

4
3
4

4
3
4

8/19

fan-both MAPPINGS

How do we map tasks ? 1D Cyclic distribution

(independently of data)

- Use of 2D computation mapping Virtual 20 mapping M
gid M 7Ty

1121172
- Mapping grid “extends” to matrix size
.) 2121112
- Better if P processors on diagonal
- Many possible mappings 111134
2012044

8/19

fan-both MAPPINGS

- How do we map tasks ? PrPo Py Pu) Py Po Ps

(independently of data) f

- Use of 2D computation mapping
grid M
- Mapping grid “extends” to matrix size

- Better if P processors on diagonal
- Many possible mappings

8/19

fan-both MAPPINGS

- How do we map tasks ? PrPo Py Pu) Py Po Ps

(independently of data) WP] Pyl Pyl P, | Py | Py
Py [Py | Py|Py|Pay|Pa| Py
Ps |Py|Ps|Ps|Py|Py|Ps

P3Py | P3| Py| Py | Py | Py
- Mapping grid “extends” to matrix size
- Better if P processors on diagonal Pr| Py [Pr| Py | PL P Ps
- Many possible mappings Py Py| Py | Py | Py | Py Py

P3| Py | P3| Py|Ps Pyl Ps

- Use of 2D computation mapping
grid M

8/19

fan-both MAPPINGS

- How do we map tasks ? PrPo Py Pu) Py Poy Ps

(independently of data) @

- Use of 2D computation mapping
grid M
- Mapping grid “extends” to matrix size

- Better if P processors on diagonal
- Many possible mappings

- F(i) on proc. M(i, i)

8/19

fan-both MAPPINGS

- How do we map tasks ? PrPo Py Pu) Py Poy Ps

(independently of data) @

- Use of 2D computation mapping
grid M
- Mapping grid “extends” to matrix size

- Better if P processors on diagonal
- Many possible mappings

- F(i) on proc. M(i, i)

8/19

fan-both MAPPINGS

- How do we map tasks ? P2 P3| Py Pr P2y Ps

(independently of data)

®4‘U

- Use of 2D computation mapping
grid M
- Mapping grid “extends” to matrix size

- Better if P processors on diagonal
- Many possible mappings

- F(i) on proc. M(i, i)
- U@, i) on M, i)

@DOOd

8/19

fan-both MAPPINGS

- How do we map tasks ? 11P2) Py Py Py Py Ps

(independently of data)

- Use of 2D computation mapping
grid M
- Mapping grid “extends” to matrix size

- Better if P processors on diagonal
- Many possible mappings

- F(i) on proc. M(i, i)
- U@, i) on M, i)

eeds o .

8/19

fan-both MAPPINGS

- How do we map tasks ? P2 P3| Py Pr P2y Ps

(independently of data)

®4‘U

- Use of 2D computation mapping
grid M
- Mapping grid “extends” to matrix size

- Better if P processors on diagonal
- Many possible mappings

- F(i) on proc. M(i, i)
- U@, i) on M, i)

@DOOd

8/19

fan-both MAPPINGS

- How do we map tasks ? PrPo Py Pu) Py Poy Ps

(independently of data) @
| | J2)
- Use of 2D computation mapping (

- Mapping grid “extends” to matrix size
- Better if P processors on diagonal

- Many possible mappings @J(DQ
- F(i) on proc. M(i, i)

- U@, i) on M(j,i) \

8/19

fan-both MAPPINGS

- How do we map tasks ? ‘Pl P2 P3| Py Pr P2y Ps
(independently of data) @
| | ®
- Use of 2D computation mapping @9
grid M

- Mapping grid “extends” to matrix size
- Better if P processors on diagonal

®
- Many possible mappings @ @2

- F(i) on proc. M(i, i)
- U@, i) on M, i)

8/19

fan-both MAPPINGS

- How do we map tasks ? P2 P3| Py Pr P2y Ps

(P
(independently of data) @5

- Use of 2D computation mapping
grid M

- Mapping grid “extends” to matrix size
- Better if P processors on diagonal

®
- Many possible mappings @ @2

- F(i) on proc. M(i, i)
- U@, i) on M, i)

8/19

fan-both MAPPINGS

- How do we map tasks ? ‘Pl P2 P3| Py Pr P2y Ps

(independently of data) @

- Use of 2D computation mapping

rid M @
¢ RIRI212
@ | &

- Mapping grid “extends” to matrix size
- Better if P processors on diagonal

- Many possible mappings @ @2
- F(i) on proc. M(i, i)

: U(j>i) on M(/»’) ‘
-~ A() on M)

8/19

fan-both MAPPINGS

Py P3 Py P1 Py Ps

RS

- How do we map tasks ?
(independently of data) =

)

- Use of 2D computation mapping
grid M
- Mapping grid “extends” to matrix size

- Better if P processors on diagonal
- Many possible mappings

@\ @
o2
&

©.5)

- F(i) on proc. M(i, i)
- U@, i) on M, i)
-~ A() on M)

DSOS
@

8/19

fan-both MAPPINGS

- How do we map tasks ? PrPo Py Pu) Py Poy Ps

(independently of data) @

- Use of 2D computation mapping

rid M @
¢ BEEE)
¢ | &

- Mapping grid “extends” to matrix size
- Better if P processors on diagonal

- Many possible mappings @ @2
- F(i) on proc. M(i, i)

: U(j>i) on M(/»’) ‘
-~ A() on M)

8/19

1 2 3 0 1 0 0 0 0 0 0 0 2 2 0 0
1 2 3 0 1 1 1 1 1 1 1 1 3 3 1 1
1 2 3 0 1 2 2 2 2 2 0 0 2 2 0 0
1 2 3 0 1 3 3 3 3 3 1 1 3 3 1 1
1 2 3 0 1 0 0 0 0 0 0 0 2 2 0 0
1 2 3 0 1 1 1 1 1 1 1 1 3 3 1 1
Fan-In Fan-Out Fan-Both
M;j = mod(i, P) M;j = mod(j, P) My = moamin(ih), P+

P|mod(max(i,j),P)/P]

Three different computation maps, corresponding to
Fan-In, Fan-0ut and Fan-Both

9/19

DESIGN PRINCIPLES

- Remove synchronization points
- Asynchronous point to point send
- Group communication:
(MPI) Collectives probably not the way to go
- Requires too many communicators
- Efficient non blocking collectives needed
- Collective nature

10/19

DESIGN PRINCIPLES

- Remove synchronization points

- Asynchronous point to point send
- Group communication:
(MPI) Collectives probably not the way to go
- Requires too many communicators
- Efficient non blocking collectives needed
- Collective nature

- Asynchronous tree-based group communications
- Non-collectives = full asynchronicity

10/19

DESIGN PRINCIPLES

- Remove synchronization points

- Asynchronous point to point send
- Group communication:
(MPI) Collectives probably not the way to go

- Requires too many communicators
- Efficient non blocking collectives needed

- Collective nature

- Asynchronous tree-based group communications
- Non-collectives = full asynchronicity

- Minimize memory operations
- Row-major layout

10/19

DESIGN PRINCIPLES

- Remove synchronization points

- Asynchronous point to point send
- Group communication:
(MPI) Collectives probably not the way to go

- Requires too many communicators
- Efficient non blocking collectives needed

- Collective nature

- Asynchronous tree-based group communications
- Non-collectives = full asynchronicity

- Minimize memory operations

- Row-major layout
- Avoid making extra copies when sending data

10/19

DEADLOCK PREVENTION

- All operations described by task Tsyc_tgt
- Message Msgsrcstgt
- “Push” strategy natural with MPI

11/19

DEADLOCK PREVENTION

- All operations described by task Tsyc_tgt
- Message Msgsrcstgt
- “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

11/19

DEADLOCK PREVENTION

- All operations described by task Tsyc_tgt
- Message Msgsrcstgt
- “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

11/19

DEADLOCK PREVENTION

- All operations described by task Tsyc_tgt
- Message Msgsrcstgt
- “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

- Deadlock prevention is difficult:
- Total order in operations/messages
(Also observed by Amestoy et al.)
- Order by non decreasing tgt, then src:
= Use of priority queue for tasks/messages

11/19

DEADLOCK PREVENTION

- All operations described by task Tsyc_tgt
- Message Msgsrcstgt
- “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

- Deadlock prevention is difficult:
- Total order in operations/messages
(Also observed by Amestoy et al.)
- Order by non decreasing tgt, then src:
= Use of priority queue for tasks/messages
Potential over-synchronization

11/19

DEADLOCK PREVENTION

- All operations described by task Tsyc_tgt
- Message Msgsrcstgt
- “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

- Deadlock prevention is difficult:
- Total order in operations/messages
(Also observed by Amestoy et al.)
- Order by non decreasing tgt, then src:
= Use of priority queue for tasks/messages
Potential over-synchronization

- “Pull” strategy (one sided communications)
- Signal data when available
- Receiver gets data when ready
11/19

TASK SCHEDULING IN sympack

- Tasks currently mapped statically
- Processor manages local task queue LTQ

R I I I I
oo | | [[]

Tgvg

12/19

TASK SCHEDULING IN sympack

- Tasks Tsrcﬁtgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count

R N I I I I

decrease dependency
@ countof T,
RTQ | | | | | Store M;;

Tgvg

12/19

TASK SCHEDULING IN sympack

- Tasks Tsrcﬁtgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count

Tgvg

R N N I I I N

decrease dependency
@ countof T,
RTQ | | | | | Store M

12/19

TASK SCHEDULING IN sympack

- Tasks Tsrcﬁtgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

R N N I I I N

decrease dependency
) @ countof T,
RTQ | | | | ! Store M;;
»* T

) if dependency count of Tj, =0
push Tj into RTQ

Tgvg

12/19

TASK SCHEDULING IN sympack

- Tasks Tsrcﬁtgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

R N N I I

decrease dependency
) @ countof T,
RTQ | | | | ! Store M;;
: T

) if dependency count of Tj, =0
push Tj into RTQ

Tgvg

12/19

TASK SCHEDULING IN sympack

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

R N N I I

decrease dependency
) @ countof T,
RTQ | | \ | | ! Store M;;
= Tij
@ Pikataskionrrg) [fdependency counof T =0
and process it (YD Uz IR (30
T

L9

Tgvg

12/19

TASK SCHEDULING IN sympack

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

R N N I I

decrease dependency
) @ countof T,
RTQ | | \ | | ! Store M;;
= Tij
@ Pikataskionrrg) [fdependency counof T =0
and process it (YD Uz IR (30
T

L9

Tgvg

12/19

TASK SCHEDULING IN sympack

- Tasks Tsrcﬁtgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

ol L[o] [

decrease dependency
@ countof T,
Store M

i N N O
\ :Tjj

) if dependency count of Tj, =0

Pick a task from RTQ
@ push Tj into RTQ

and process it
Tig

@ decrease dependency count of Tg .
Wg upon task T;g

@ ® Send Mg to every task Ty
depending upon task T; 4

12/19

TASK SCHEDULING IN sympack

- Tasks currently mapped statically
- Processor manages local task queue LTQ

- Dependency count
- Ready tasks are placed in RTQ

o | [[
decrease dependency
@ countof T,
RTQ \ | Store M
T

Pickataskfomrrg (@) [F9ePendeney countof T =0
and process it (YD Uz IR (30

decrease dependency count of Tg .
dependmg upon task Tygy

@ ® Send Mg to every task Ty
depending upon task T; 4

12/19

TASK SCHEDULING IN sympack

- Tasks Tsrcﬁtgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

ol L[o] [

decrease dependency
@ countof T,
Store M

i N N O
\ :Tjj

) if dependency count of Tj, =0

Pick a task from RTQ
® push Tj into RTQ

and process it
Tig
@ decrease dependency count of Tg .
depending upon task T; g

@ ® Send Mg to every task Ty
depending upon task T; 4

Scheduling policy ? FIFO, close to diagonal, etc. S

NOTIFICATION AND COMMUNICATIONS IN sympack

Psource Prarget

p:Target \:_5_]
: ® -

progress()

N ? sync. call to signa[(ptr,meta) on

task T;

ﬁrogress(
communications : signal(ptr,meta):

- UPC++ and GASNet for

poll

3
c :
engueue ptr ‘ 2

- global pointer to remote memory Tist of global pir

- one-sided communications

i o) 1 for each ptr:
: get(ptr) | 3
| : 40

task T;

- asynchronous remote functions

ptr to data for task T
calls

if Tp met all deps.
engueue task

E‘ rogress(Tm ‘E;DRTQ

task T, poll

task Tp

13/19

IMPACT OF COMMUNICATION STRATEGY AND SCHEDULING

Run times on boneS10 for three variants of symPACK

@@ symPACK- Push
Y=Y symPACK- Pull
A=A symPACK- Pull dynamic scheduling

101 L

Time (s)

10(] L

v o P CL S

Processor count

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434 /19

STRONG

SCALING VS. STATE-OF-THE-ART

Time (s)

Run times on audikw_1
T — T T T T T T

@=@® SuperlLU_DIST 4.3

V=¥ Pastix522

A=A MUMPS 5.0

<=4 symPACK

L L nn L L L L L
N W © W), Y o) N o W A0 o\ S
N At o) SO AP P AL W

QYA A% o)q@% p&

Processor count

n=943,695 nnz(A)=39,297771 nnz(L)=1,221,674,796 519

STRONG SCALING VS. STATE-OF-THE-ART

Run times on Flan_1565

102 L

Time (s)

101 L

@=@® SuperlLU_DIST 4.3
V=¥ Pastix522
A=A MUMPS 5.0

<=4 symPACK

N W % ANy ©
A A I AR O

Processor count

n=1,564,794 nnz(A)=57,865,083 nnz(L)=1,574,541,576

16/19

SPEEDUP VS. STATE-OF-THE-ART VS. SUMMARY

Speedup vs. sym. | Speedup vs. best
Problem min max | avg. | min | max | avg.
G3_circuit | 0.24 | 570 | 1.07 | 0.24 | 5.70 | 1.07
Flan_1565 | 1.06 | 9.40 | 2.11 | 1.06 | 7.07 | 1.94
af_shell7 | 0.89 | 10.61 | 3.61 | 0.89 | 7.77 | 3.21
audikw_1 | 1.11 | 14.46 | 3.14 | 1.11 | 2.84 | 1.77
boneS10 = = - 1086 | 473 | 1.75
bone010 | 1.06 | 16.83 | 3.34 | 1.06 | 2.03 | 1.47

17/19

CONCLUSIONS

- Reduces communication cost in theory [Ashcraft’95]

- Increases parallelism during updates

18/19

CONCLUSIONS

- Reduces communication cost in theory [Ashcraft’95]

- Increases parallelism during updates

- Avoiding deadlocks is challenging (Similar to observation by
Larkar et al.)
- New symmetric solver symPACK

- implements Fan-Both

- Task based Cholesky requires fine / dynamic scheduling
- One sided approach using UPC++

- Asynchronous task execution model

- dynamic scheduling

18/19

ONGOING AND FUTURE WORK

- 2D wrap mapping performance
- Conflict with load balancing (proportional mapping) ?

- Tree-based group communications
- Hybrid parallelism (OpenMP)

- Data distribution (2D, block based ?)
- Scheduling strategies

- New task mapping policies

- Parallel ordering becomes a bottleneck

19/19

www.sympack.org

ONGOING AND FUTURE WORK

- 2D wrap mapping performance
- Conflict with load balancing (proportional mapping) ?

- Tree-based group communications
- Hybrid parallelism (OpenMP)

- Data distribution (2D, block based ?)
- Scheduling strategies

- New task mapping policies

- Parallel ordering becomes a bottleneck

Async. model important for scalability and to tolerate variability

19/19

www.sympack.org

ONGOING AND FUTURE WORK

- 2D wrap mapping performance
- Conflict with load balancing (proportional mapping) ?

- Tree-based group communications
- Hybrid parallelism (OpenMP)

- Data distribution (2D, block based ?)
- Scheduling strategies

- New task mapping policies

- Parallel ordering becomes a bottleneck

Async. model important for scalability and to tolerate variability

www.sympack.org

19/19

www.sympack.org

	Background and motivation
	Fan-In, Fan-Out and Fan-Both factorizations
	Parallel distributed memory implementation, a.k.a. symPACK
	Numerical experiments

