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OBJECTIVE & MOTIVATION

Motivations:

- Sparse matrices arise in many applications:

- Optimization problems
- Discretized PDEs

- Some sparse matrices are symmetric

2/19



OBJECTIVE & MOTIVATION

Motivations:
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- Optimization problems
- Discretized PDEs

- Some sparse matrices are symmetric

Challenges for current and future platforms:

- Higher relative communication costs

- Lower amount of memory per core
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OBJECTIVE & MOTIVATION

Objective:

- Compute sparse A = LLT factorization
- A Is sparse symmetric matrix

- Ais positive definite
- Need to exploit symmetry

- L is a lower triangular matrix
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SPARSE MATRICES AND ELIMINATION TREE
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CHOLESKY FACTORIZATION

- Only lower triangular part of A is stored

- Basic algorithm:

Algorithm 1: Basic Cholesky algorithm

for columnj =1ton do
bj = A
forrowi=j+1tondo
| &y =414

end

for columnk =j +1ton do
forrowi=ktondo
Aik =Air —lij - Llrj
end

end

end
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CHOLESKY FACTORIZATION

- Only lower triangular part of A is stored

- Basic algorithm:

Algorithm 1: Basic Cholesky algorithm

for columnj =1ton do

bj = A

forrowi=j+1tondo ,
Factor column

| =AY,

end

Update next columns
and Aggregate updates
forrowi=ktondo

tmp; = tmp; + ¢ - Lgj
end
Ak = Ak —tMp.

for columnk =j +1ton do
forrowi=ktondo
Aik =Air —lij - Llrj
end

end

end
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fan-both ALGORITHM

- Three families [Ashcraft'95]:
- Fan-In: “fanning-in updates”

- Reduce aggregate vectors (updates)
- Factorize column
- Compute all updates from that column locally
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fan-both ALGORITHM
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Produces cholesky factor ¢, 0

- U(j,): update of col. i with col. j

Put the update in an (temporary) aggregate vector ¢,
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fan-both MAPPINGS

How do we map tasks ? 1D Cyclic distribution

(independently of data)

- Use of 2D computation mapping Virtual 20 mapping M
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fan-both MAPPINGS

How do we map tasks ? 1D Cyclic distribution

(independently of data)

- Use of 2D computation mapping Virtual 20 mapping M
gid M 7Ty

1121172
- Mapping grid “extends” to matrix size
. ) 2121112
- Better if P processors on diagonal
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1 2 3 0 1 0 0 0 0 0 0 0 2 2 0 0
1 2 3 0 1 1 1 1 1 1 1 1 3 3 1 1
1 2 3 0 1 2 2 2 2 2 0 0 2 2 0 0
1 2 3 0 1 3 3 3 3 3 1 1 3 3 1 1
1 2 3 0 1 0 0 0 0 0 0 0 2 2 0 0
1 2 3 0 1 1 1 1 1 1 1 1 3 3 1 1
Fan-In Fan-Out Fan-Both
M;j = mod(i, P) M;j = mod(j, P) My = moamin(ih), P+

P|mod(max(i,j),P)/P]

Three different computation maps, corresponding to
Fan-In, Fan-0ut and Fan-Both
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- Remove synchronization points

- Asynchronous point to point send
- Group communication:
(MPI) Collectives probably not the way to go

- Requires too many communicators
- Efficient non blocking collectives needed

- Collective nature

- Asynchronous tree-based group communications
- Non-collectives = full asynchronicity

- Minimize memory operations

- Row-major layout
- Avoid making extra copies when sending data

10/19
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DEADLOCK PREVENTION

- All operations described by task Tsyc_tgt
- Message Msgsrcstgt
- “Push” strategy natural with MPI

Asynchronous comm. becomes blocking when out of buffer

Deadlock issues

- Deadlock prevention is difficult:
- Total order in operations/messages
(Also observed by Amestoy et al.)
- Order by non decreasing tgt, then src:
= Use of priority queue for tasks/messages
Potential over-synchronization

- “Pull” strategy (one sided communications)
- Signal data when available
- Receiver gets data when ready
11/19
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TASK SCHEDULING IN sympack

- Tasks Tsrcﬁtgt

- Tasks currently mapped statically

- Processor manages local task queue LTQ
- Dependency count
- Ready tasks are placed in RTQ

ol L[ o] [

decrease dependency
@ countof T,
Store M

i N N O
\ :Tjj

) if dependency count of Tj, =0

Pick a task from RTQ
® push Tj into RTQ

and process it
Tig
@ decrease dependency count of Tg .
depending upon task T; g

@ ® Send Mg to every task Ty
depending upon task T; 4

Scheduling policy ? FIFO, close to diagonal, etc. S



NOTIFICATION AND COMMUNICATIONS IN sympack

Psource Prarget

p:Target \:_5_]
: ® -

progress()

N ? sync. call to signa[(ptr,meta) on

task T;

ﬁrogress(
communications : signal(ptr,meta):

- UPC++ and GASNet for

poll

3
c :
engueue ptr ‘ 2

- global pointer to remote memory Tist of global pir

- one-sided communications

i o) 1 for each ptr:
: get(ptr) | 3
| : 40

task T;

- asynchronous remote functions

ptr to data for task T
calls

if Tp met all deps.
engueue task

E‘ rogress( Tm ‘E;DRTQ

task T, poll

task Tp
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IMPACT OF COMMUNICATION STRATEGY AND SCHEDULING

Run times on boneS10 for three variants of symPACK

@@ symPACK- Push
Y=Y symPACK- Pull
A=A symPACK- Pull dynamic scheduling

101 L

Time (s)

10(] L

v o P CL S

Processor count

n=914,898 nnz(A)=20,896,803 nnz(L)=318,019,434 /19



STRONG

SCALING VS. STATE-OF-THE-ART

Time (s)

Run times on audikw_1
T — T T T T T T

@=@® SuperlLU_DIST 4.3

V=¥ Pastix522

A=A MUMPS 5.0
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L L nn L L L L L
N W © W), Y o) N o W A0 o\ S
N At o) SO AP P AL W

QYA A% o)q@% p&
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STRONG SCALING VS. STATE-OF-THE-ART

Run times on Flan_1565

102 L

Time (s)

101 L

@=@® SuperlLU_DIST 4.3
V=¥ Pastix522
A=A MUMPS 5.0

<=4 symPACK

N W % ANy ©
A A I AR O

Processor count

n=1,564,794 nnz(A)=57,865,083 nnz(L)=1,574,541,576
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SPEEDUP VS. STATE-OF-THE-ART VS. SUMMARY

Speedup vs. sym. | Speedup vs. best
Problem min max | avg. | min | max | avg.
G3_circuit | 0.24 | 570 | 1.07 | 0.24 | 5.70 | 1.07
Flan_1565 | 1.06 | 9.40 | 2.11 | 1.06 | 7.07 | 1.94
af_shell7 | 0.89 | 10.61 | 3.61 | 0.89 | 7.77 | 3.21
audikw_1 | 1.11 | 14.46 | 3.14 | 1.11 | 2.84 | 1.77
boneS10 = = - 1086 | 473 | 1.75
bone010 | 1.06 | 16.83 | 3.34 | 1.06 | 2.03 | 1.47
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CONCLUSIONS

- Reduces communication cost in theory [Ashcraft’95]

- Increases parallelism during updates
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CONCLUSIONS

- Reduces communication cost in theory [Ashcraft’95]

- Increases parallelism during updates

- Avoiding deadlocks is challenging (Similar to observation by
Larkar et al.)
- New symmetric solver symPACK

- implements Fan-Both

- Task based Cholesky requires fine / dynamic scheduling
- One sided approach using UPC++

- Asynchronous task execution model

- dynamic scheduling
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ONGOING AND FUTURE WORK

- 2D wrap mapping performance
- Conflict with load balancing (proportional mapping) ?

- Tree-based group communications
- Hybrid parallelism (OpenMP)

- Data distribution (2D, block based ?)
- Scheduling strategies

- New task mapping policies

- Parallel ordering becomes a bottleneck
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